## Generators and irreducible polynomials over finite fields

HTML articles powered by AMS MathViewer

- by Daqing Wan PDF
- Math. Comp.
**66**(1997), 1195-1212 Request permission

## Abstract:

Weil’s character sum estimate is used to study the problem of constructing generators for the multiplicative group of a finite field. An application to the distribution of irreducible polynomials is given, which confirms an asymptotic version of a conjecture of Hansen-Mullen.## References

- Eric Bach, James Driscoll, and Jeffrey Shallit,
*Factor refinement*, J. Algorithms**15**(1993), no. 2, 199–222. MR**1231441**, DOI 10.1006/jagm.1993.1038 - F. R. K. Chung,
*Diameters and eigenvalues*, J. Amer. Math. Soc.**2**(1989), no. 2, 187–196. MR**965008**, DOI 10.1090/S0894-0347-1989-0965008-X - Stephen D. Cohen,
*Primitive elements and polynomials with arbitrary trace*, Discrete Math.**83**(1990), no. 1, 1–7. MR**1065680**, DOI 10.1016/0012-365X(90)90215-4 - Gove W. Effinger and David R. Hayes,
*Additive number theory of polynomials over a finite field*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR**1143282** - W. B. Han,
*Some Applications of Character Sums in Finite Fields and Coding Theory*, Ph.D. Dissertation, Sichuan University, 1994. - Wen Bao Han,
*The coefficients of primitive polynomials over finite fields*, Math. Comp.**65**(1996), no. 213, 331–340. MR**1320895**, DOI 10.1090/S0025-5718-96-00663-1 - Tom Hansen and Gary L. Mullen,
*Primitive polynomials over finite fields*, Math. Comp.**59**(1992), no. 200, 639–643, S47–S50. MR**1134730**, DOI 10.1090/S0025-5718-1992-1134730-7 - Nicholas M. Katz,
*An estimate for character sums*, J. Amer. Math. Soc.**2**(1989), no. 2, 197–200. MR**965007**, DOI 10.1090/S0894-0347-1989-0965007-8 - H. W. Lenstra Jr.,
*Finding isomorphisms between finite fields*, Math. Comp.**56**(1991), no. 193, 329–347. MR**1052099**, DOI 10.1090/S0025-5718-1991-1052099-2 - H. W. Lenstra Jr.,
*Multiplicative groups generated by linear expressions*, unpublished notes. - H. W. Lenstra Jr. and R. J. Schoof,
*Primitive normal bases for finite fields*, Math. Comp.**48**(1987), no. 177, 217–231. MR**866111**, DOI 10.1090/S0025-5718-1987-0866111-3 - Wen-Ch’ing Winnie Li,
*Character sums and abelian Ramanujan graphs*, J. Number Theory**41**(1992), no. 2, 199–217. With an appendix by Ke Qin Feng and the author. MR**1164798**, DOI 10.1016/0022-314X(92)90120-E - Victor Shoup,
*Searching for primitive roots in finite fields*, Math. Comp.**58**(1992), no. 197, 369–380. MR**1106981**, DOI 10.1090/S0025-5718-1992-1106981-9 - Igor E. Shparlinski,
*Computational and algorithmic problems in finite fields*, Mathematics and its Applications (Soviet Series), vol. 88, Kluwer Academic Publishers Group, Dordrecht, 1992. MR**1249064**, DOI 10.1007/978-94-011-1806-4 - Da Qing Wan,
*A $p$-adic lifting lemma and its applications to permutation polynomials*, Finite fields, coding theory, and advances in communications and computing (Las Vegas, NV, 1991) Lecture Notes in Pure and Appl. Math., vol. 141, Dekker, New York, 1993, pp. 209–216. MR**1199834** - André Weil,
*Basic number theory*, 3rd ed., Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag, New York-Berlin, 1974. MR**0427267**, DOI 10.1007/978-3-642-61945-8

## Additional Information

**Daqing Wan**- Affiliation: Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802
- MR Author ID: 195077
- Email: wan@math.psu.edu
- Received by editor(s): December 8, 1995
- Received by editor(s) in revised form: May 8, 1996
- Additional Notes: This research was partially supported by NSF
- © Copyright 1997 American Mathematical Society
- Journal: Math. Comp.
**66**(1997), 1195-1212 - MSC (1991): Primary 11T24, 11T55
- DOI: https://doi.org/10.1090/S0025-5718-97-00835-1
- MathSciNet review: 1401947