Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems
HTML articles powered by AMS MathViewer
- by Bernardo Cockburn, Don A. Jones and Edriss S. Titi PDF
- Math. Comp. 66 (1997), 1073-1087 Request permission
Abstract:
We show that the long-time behavior of the projection of the exact solutions to the Navier-Stokes equations and other dissipative evolution equations on the finite-dimensional space of interpolant polynomials determines the long-time behavior of the solution itself provided that the spatial mesh is fine enough. We also provide an explicit estimate on the size of the mesh. Moreover, we show that if the evolution equation has an inertial manifold, then the dynamics of the evolution equation is equivalent to the dynamics of the projection of the solutions on the finite-dimensional space spanned by the approximating polynomials. Our results suggest that certain numerical schemes may capture the essential dynamics of the underlying evolution equation.References
- A. V. Babin and M. I. Vishik, Attractors of evolution partial differential equations and estimates of their dimension, Uspekhi Mat. Nauk 38 (1983), no. 4(232), 133–187 (Russian). MR 710119
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- B. Cockburn, D.A. Jones, E.S. Titi, Degrés de liberté déterminants pour équations nonlinéaires dissipatives, C.R. Acad. Sci.-Paris, Sér. I, 321, (1995), 563–568.
- Peter Constantin and Ciprian Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. MR 972259, DOI 10.7208/chicago/9780226764320.001.0001
- P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Integral manifolds and inertial manifolds for dissipative partial differential equations, Applied Mathematical Sciences, vol. 70, Springer-Verlag, New York, 1989. MR 966192, DOI 10.1007/978-1-4612-3506-4
- P. Constantin, C. Foias, and R. Temam, On the large time Galerkin approximation of the Navier-Stokes equations, SIAM J. Numer. Anal. 21 (1984), no. 4, 615–634. MR 749361, DOI 10.1137/0721043
- P. Constantin, C. Foias, and R. Temam, On the dimension of the attractors in two-dimensional turbulence, Phys. D 30 (1988), no. 3, 284–296. MR 947902, DOI 10.1016/0167-2789(88)90022-X
- Ciprian Foias and Igor Kukavica, Determining nodes for the Kuramoto-Sivashinsky equation, J. Dynam. Differential Equations 7 (1995), no. 2, 365–373. MR 1336466, DOI 10.1007/BF02219361
- C. Foias, O. P. Manley, R. Temam, and Y. M. Trève, Asymptotic analysis of the Navier-Stokes equations, Phys. D 9 (1983), no. 1-2, 157–188. MR 732571, DOI 10.1016/0167-2789(83)90297-X
- C. Foias, B. Nicolaenko, G. R. Sell, and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl. (9) 67 (1988), no. 3, 197–226. MR 964170
- C. Foiaş and G. Prodi, Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$, Rend. Sem. Mat. Univ. Padova 39 (1967), 1–34 (French). MR 223716
- Ciprian Foias, George R. Sell, and Roger Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), no. 2, 309–353. MR 943945, DOI 10.1016/0022-0396(88)90110-6
- Ciprian Foias, George R. Sell, and Edriss S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dynam. Differential Equations 1 (1989), no. 2, 199–244. MR 1010966, DOI 10.1007/BF01047831
- C. Foias, R. Temam, Asymptotic numerical analysis for the Navier-Stokes equations, Nonlinear Dynamics and Turbulence, Edit. by Barenblatt, Iooss, Joseph, Boston: Pitman Advanced Pub. Prog., 1983.
- Ciprian Foias and Roger Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values, Math. Comp. 43 (1984), no. 167, 117–133. MR 744927, DOI 10.1090/S0025-5718-1984-0744927-9
- Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity 4 (1991), no. 1, 135–153. MR 1092888, DOI 10.1088/0951-7715/4/1/009
- V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. MR 548867, DOI 10.1007/BFb0063453
- Jack K. Hale, Xiao-Biao Lin, and Geneviève Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. Comp. 50 (1988), no. 181, 89–123. MR 917820, DOI 10.1090/S0025-5718-1988-0917820-X
- John G. Heywood and Rolf Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. II. Stability of solutions and error estimates uniform in time, SIAM J. Numer. Anal. 23 (1986), no. 4, 750–777. MR 849281, DOI 10.1137/0723049
- D.A. Jones, A.M. Stuart, E.S. Titi, Persistence of invariant sets for dissipative evolution equations, (submitted).
- Don A. Jones and Edriss S. Titi, On the number of determining nodes for the $2$D Navier-Stokes equations, J. Math. Anal. Appl. 168 (1992), no. 1, 72–88. MR 1169849, DOI 10.1016/0022-247X(92)90190-O
- Don A. Jones and Edriss S. Titi, Determining finite volume elements for the $2$D Navier-Stokes equations, Phys. D 60 (1992), no. 1-4, 165–174. Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991). MR 1195597, DOI 10.1016/0167-2789(92)90233-D
- Don A. Jones and Edriss S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana Univ. Math. J. 42 (1993), no. 3, 875–887. MR 1254122, DOI 10.1512/iumj.1993.42.42039
- D.A. Jones, E.S. Titi, $C^1$ Approximations of inertial manifolds for dissipative nonlinear equations, J. Diff. Eq., 127, (1996), 54-86.
- R.H. Kraichnan, Interial ranges in two-dimensional turbulence, Phys. Fluids, 10, (1967), 1417-1423.
- Igor Kukavica, On the number of determining nodes for the Ginzburg-Landau equation, Nonlinearity 5 (1992), no. 5, 997–1006. MR 1187736, DOI 10.1088/0951-7715/5/5/001
- L. Landau, E. Lifschitz, Fluid Mechanics, Addison-Wesley, New-York, 1953.
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 0259693
- Vincent Xiaosong Liu, A sharp lower bound for the Hausdorff dimension of the global attractors of the $2$D Navier-Stokes equations, Comm. Math. Phys. 158 (1993), no. 2, 327–339. MR 1249598, DOI 10.1007/BF02108078
- John Mallet-Paret and George R. Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions, J. Amer. Math. Soc. 1 (1988), no. 4, 805–866. MR 943276, DOI 10.1090/S0894-0347-1988-0943276-7
- Roger Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. MR 764933
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR 953967, DOI 10.1007/978-1-4684-0313-8
- Edriss Saleh Titi, On a criterion for locating stable stationary solutions to the Navier-Stokes equations, Nonlinear Anal. 11 (1987), no. 9, 1085–1102. MR 907825, DOI 10.1016/0362-546X(87)90086-1
- Edriss Saleh Titi, Un critère pour l’approximation des solutions périodiques des équations de Navier-Stokes, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 1, 41–43 (French, with English summary). MR 1086498
- R. Wait and A. R. Mitchell, Finite element analysis and applications, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. MR 817440
Additional Information
- Bernardo Cockburn
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- Email: cockburn@math.umn.edu
- Don A. Jones
- Affiliation: IGPP, University of California, Los Alamos National Laboratory, Mail Stop C305, Los Alamos, New Mexico 87544
- Email: dajones@kokopelli.lanl.gov
- Edriss S. Titi
- Affiliation: Department of Mathematics, and Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697
- MR Author ID: 172860
- Email: etiti@math.uci.edu
- Received by editor(s): July 27, 1995
- Received by editor(s) in revised form: June 5, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Math. Comp. 66 (1997), 1073-1087
- MSC (1991): Primary 35B40, 35Q30
- DOI: https://doi.org/10.1090/S0025-5718-97-00850-8
- MathSciNet review: 1415799