Convergence of difference schemes with high resolution for conservation laws
HTML articles powered by AMS MathViewer
- by Gui-Qiang Chen and Jian-Guo Liu PDF
- Math. Comp. 66 (1997), 1027-1053 Request permission
Abstract:
We are concerned with the convergence of Lax-Wendroff type schemes with high resolution to the entropy solutions for conservation laws. These schemes include the original Lax-Wendroff scheme proposed by Lax and Wendroff in 1960 and its two step versions–the Richtmyer scheme and the MacCormack scheme. For the convex scalar conservation laws with algebraic growth flux functions, we prove the convergence of these schemes to the weak solutions satisfying appropriate entropy inequalities. The proof is based on detailed $L^{p}$ estimates of the approximate solutions, $H^{-1}$ compactness estimates of the corresponding entropy dissipation measures, and some compensated compactness frameworks. Then these techniques are generalized to study the convergence problem for the nonconvex scalar case and the hyperbolic systems of conservation laws.References
- J.P. Boris and D.L. Book, Flux corrected transport. I. SHASTA, a fluid transport algorithm that works, J. Comp. Phys. 11 (1973), 38-69.
- G.-Q. Chen, The compensated compactness method and the system of isentropic gas dynamics, MSRI Preprint 00527-91, Berkeley (1990).
- Gui Qiang Chen and Yun Guang Lu, The study on application way of the compensated compactness theory, Chinese Sci. Bull. 34 (1989), no. 1, 15–19. MR 1000841
- Frédéric Coquel and Philippe LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach, Math. Comp. 57 (1991), no. 195, 169–210. MR 1079010, DOI 10.1090/S0025-5718-1991-1079010-2
- R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82 (1983), no. 1, 27–70. MR 684413, DOI 10.1007/BF00251724
- Ami Harten, Björn Engquist, Stanley Osher, and Sukumar R. Chakravarthy, Uniformly high-order accurate essentially nonoscillatory schemes. III, J. Comput. Phys. 71 (1987), no. 2, 231–303. MR 897244, DOI 10.1016/0021-9991(87)90031-3
- A. Harten, J. M. Hyman, and P. D. Lax, On finite-difference approximations and entropy conditions for shocks, Comm. Pure Appl. Math. 29 (1976), no. 3, 297–322. With an appendix by B. Keyfitz. MR 413526, DOI 10.1002/cpa.3160290305
- Amiram Harten, Peter D. Lax, and Bram van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983), no. 1, 35–61. MR 693713, DOI 10.1137/1025002
- S. Jin and Z. Xin, The relaxing schemes for systems of conservation laws in arbitrary space dimensions, Preprint (1993).
- P. D. Lax, C. D. Levermore, and S. Venakides, The generation and propagation of oscillations in dispersive initial value problems and their limiting behavior, Important developments in soliton theory, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993, pp. 205–241. MR 1280476
- Peter Lax and Burton Wendroff, Systems of conservation laws, Comm. Pure Appl. Math. 13 (1960), 217–237. MR 120774, DOI 10.1002/cpa.3160130205
- Pierre-Louis Lions and Panagiotis Souganidis, Convergence of MUSCL type methods for scalar conservation laws, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 5, 259–264 (English, with French summary). MR 1071622
- R.W. MacCormack, The effect of viscosity in hyperbolicity impact cratering, AIAA Paper (1969), 69–354.
- Andrew Majda and Stanley Osher, A systematic approach for correcting nonlinear instabilities. The Lax-Wendroff scheme for scalar conservation laws, Numer. Math. 30 (1978), no. 4, 429–452. MR 502526, DOI 10.1007/BF01398510
- Andrew Majda and Stanley Osher, Numerical viscosity and the entropy condition, Comm. Pure Appl. Math. 32 (1979), no. 6, 797–838. MR 539160, DOI 10.1002/cpa.3160320605
- Cathleen S. Morawetz, An alternative proof of DiPerna’s theorem, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 1081–1090. MR 1127051, DOI 10.1002/cpa.3160440818
- François Murat, L’injection du cône positif de $H^{-1}$ dans $W^{-1,\,q}$ est compacte pour tout $q<2$, J. Math. Pures Appl. (9) 60 (1981), no. 3, 309–322 (French, with English summary). MR 633007
- Haim Nessyahu and Eitan Tadmor, Nonoscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys. 87 (1990), no. 2, 408–463. MR 1047564, DOI 10.1016/0021-9991(90)90260-8
- Stanley Osher, Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal. 22 (1985), no. 5, 947–961. MR 799122, DOI 10.1137/0722057
- Stanley Osher and Eitan Tadmor, On the convergence of difference approximations to scalar conservation laws, Math. Comp. 50 (1988), no. 181, 19–51. MR 917817, DOI 10.1090/S0025-5718-1988-0917817-X
- B. Perthame, Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions, SIAM J. Numer. Anal. 29 (1992), no. 1, 1–19 (English, with French summary). MR 1149081, DOI 10.1137/0729001
- Robert D. Richtmyer and K. W. Morton, Difference methods for initial-value problems, 2nd ed., Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR 0220455
- Denis Serre, La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations à une dimension d’espace, J. Math. Pures Appl. (9) 65 (1986), no. 4, 423–468 (French). MR 881690
- Chi-Wang Shu and Stanley Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes. II, J. Comput. Phys. 83 (1989), no. 1, 32–78. MR 1010162, DOI 10.1016/0021-9991(89)90222-2
- Yiorgos Sokratis Smyrlis, Existence and stability of stationary profiles of the LW scheme, Comm. Pure Appl. Math. 43 (1990), no. 4, 509–545. MR 1047334, DOI 10.1002/cpa.3160430405
- P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21 (1984), no. 5, 995–1011. MR 760628, DOI 10.1137/0721062
- T. Tang, On three-point second-order accurate conservative difference schemes, J. Comput. Math. 5 (1987), no. 2, 105–118. MR 919298
- L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, Mass.-London, 1979, pp. 136–212. MR 584398
- B. van Leer, Towards the ultimate conservative difference schemes, V, A second order sequel to Godunov’s method, J. Comp. Phys. 43 (1981), 357–372.
- Paul Woodward and Phillip Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54 (1984), no. 1, 115–173. MR 748569, DOI 10.1016/0021-9991(84)90142-6
- H. Yang, Nonlinear wave analysis and convergence of MUSCL schemes, IMA Preprint 697 (1990).
- S.-H. Yu, Existence of the local discrete shock profile for the Lax-Wendroff scheme, Preprint (1992).
Additional Information
- Gui-Qiang Chen
- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
- MR Author ID: 249262
- ORCID: 0000-0001-5146-3839
- Email: gqchen@math.nwu.edu
- Jian-Guo Liu
- Affiliation: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
- MR Author ID: 233036
- ORCID: 0000-0002-9911-4045
- Email: jliu@math.temple.edu
- Received by editor(s): April 1, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Math. Comp. 66 (1997), 1027-1053
- MSC (1991): Primary 65M12; Secondary 35L65
- DOI: https://doi.org/10.1090/S0025-5718-97-00859-4
- MathSciNet review: 1422786