On Wendt’s determinant
HTML articles powered by AMS MathViewer
- by Charles Helou PDF
- Math. Comp. 66 (1997), 1341-1346 Request permission
Abstract:
Wendt’s determinant of order $m$ is the circulant determinant $W_{m}$ whose $(i,j)$-th entry is the binomial coefficient $\binom m{|i-j|}$, for $1\leq i,j\leq m$. We give a formula for $W_{m}$, when $m$ is even not divisible by 6, in terms of the discriminant of a polynomial $T_{m+1}$, with rational coefficients, associated to $(X+1)^{m+1}-X^{m+1}-1$. In particular, when $m=p-1$ where $p$ is a prime $\equiv -1 (mod 6)$, this yields a factorization of $W_{p-1}$ involving a Fermat quotient, a power of $p$ and the 6-th power of an integer.References
- David W. Boyd, The asymptotic behaviour of the binomial circulant determinant, J. Math. Anal. Appl. 86 (1982), no. 1, 30–38. MR 649851, DOI 10.1016/0022-247X(82)90250-5
- L. Carlitz, A determinant connected with Fermat’s last theorem, Proc. Amer. Math. Soc. 10 (1959), 686–690. MR 108466, DOI 10.1090/S0002-9939-1959-0108466-8
- L. Carlitz, A determinant connected with Fermat’s last theorem, Proc. Amer. Math. Soc. 11 (1960), 730–733. MR 117192, DOI 10.1090/S0002-9939-1960-0117192-9
- P. M. Cohn, Algebra. Vol. 1, 2nd ed., John Wiley & Sons, Ltd., Chichester, 1982. MR 663370
- Greg Fee and Andrew Granville, The prime factors of Wendt’s binomial circulant determinant, Math. Comp. 57 (1991), no. 196, 839–848. MR 1094948, DOI 10.1090/S0025-5718-1991-1094948-8
- David Ford and Vijay Jha, On Wendt’s determinant and Sophie Germain’s theorem, Experiment. Math. 2 (1993), no. 2, 113–120. MR 1259425, DOI 10.1080/10586458.1993.10504271
- J. S. Frame, Factors of the binomial circulant determinant, Fibonacci Quart. 18 (1980), no. 1, 9–23. MR 570658
- C. Helou, Cauchy’s polynomials and Mirimanoff’s conjecture, preprint.
- E. Lehmer, On a resultant connected with Fermat’s last theorem, Bull. Amer. Math. Soc. 41 (1935), 864-867.
- Paulo Ribenboim, 13 lectures on Fermat’s last theorem, Springer-Verlag, New York-Heidelberg, 1979. MR 551363, DOI 10.1007/978-1-4684-9342-9
- B. L. van der Waerden, Algebra. Vol 1, Frederick Ungar Publishing Co., New York, 1970. Translated by Fred Blum and John R. Schulenberger. MR 0263582
- E. Wendt, Arithmetische Studien über den letzten Fermatschen Satz, welcher aussagt, dass die Gleichung $a^{n}=b^{n}+c^{n}$ für $n>2$ in ganzen Zahlen nicht auflösbar ist, J. reine angew. Math. 113 (1894), 335-347.
Additional Information
- Charles Helou
- Affiliation: Penn State University, Delaware County, 25 Yearsley Mill Road, Media, Pennsylvania 19063
- Email: cxh22@psu.edu
- Received by editor(s): May 6, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Math. Comp. 66 (1997), 1341-1346
- MSC (1991): Primary {11C20; Secondary 11Y40, 11D41, 12E10}
- DOI: https://doi.org/10.1090/S0025-5718-97-00870-3
- MathSciNet review: 1423075