On the singular values
of Weber modular functions
Authors:
Noriko Yui and Don Zagier
Journal:
Math. Comp. 66 (1997), 1645-1662
MSC (1991):
Primary 11G15; Secondary 11R37, 11F03, 11G16
DOI:
https://doi.org/10.1090/S0025-5718-97-00854-5
MathSciNet review:
1415803
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The minimal polynomials of the singular values of the classical Weber modular functions give far simpler defining polynomials for the class fields of imaginary quadratic fields than the minimal polynomials of singular moduli of level 1. We describe computations of these polynomials and give conjectural formulas describing the prime decomposition of their resultants and discriminants, extending the formulas of Gross-Zagier for the level 1 case.
- 1. A. O. L. Atkin and F. Morain, Elliptic curves and primality proving, Math. Comp. 61 (1993), no. 203, 29–68. MR 1199989, https://doi.org/10.1090/S0025-5718-1993-1199989-X
- 2. Berwick, W.E.H., Modular invariants expressible in terms of quadratic and cubic irrationalities, Proc. London Math. Soc. 28 (1928), 53-69.
- 3. B. J. Birch, Weber’s class invariants, Mathematika 16 (1969), 283–294. MR 262206, https://doi.org/10.1112/S0025579300008251
- 4. Harvey Cohn, Introduction to the construction of class fields, Cambridge Studies in Advanced Mathematics, vol. 6, Cambridge University Press, Cambridge, 1985. MR 812270
- 5. David A. Cox, Primes of the form 𝑥²+𝑛𝑦², A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Fermat, class field theory and complex multiplication. MR 1028322
- 6. Deuring, M., Teilbarkeitseigenschaften der singulären Moduln der elliptischen Funktionen und die Diskriminante der Klassengleichung, Comm. Math. Helvetici 19 (1946), 74-82. MR 8:318d
- 7. Benedict H. Gross and Don B. Zagier, On singular moduli, J. Reine Angew. Math. 355 (1985), 191–220. MR 772491
- 8. Erich Kaltofen and Noriko Yui, Explicit construction of the Hilbert class fields of imaginary quadratic fields by integer lattice reduction, Number theory (New York, 1989/1990) Springer, New York, 1991, pp. 149–202. MR 1124640
- 9. Reinhard Schertz, Die singulären Werte der Weberschen Funktionen 𝔣,𝔣𝔰𝔟1,𝔣₂, 𝛾₂, 𝛾₃, J. Reine Angew. Math. 286(287) (1976), 46–74 (German). MR 422213, https://doi.org/10.1515/crll.1976.286-287.46
- 10. Watson, G.N., Singular moduli (3), Proc. London Math. Soc. 40 (1936), 83-142.
- 11. Weber, H., Lehrbuch der Algebra, Bd. III, Braunschweig, 1908.
- 12. Hajir, F. and Rodriguez Villegas, F., Explicit elliptic units I, preprint, 1995.
Retrieve articles in Mathematics of Computation with MSC (1991): 11G15, 11R37, 11F03, 11G16
Retrieve articles in all journals with MSC (1991): 11G15, 11R37, 11F03, 11G16
Additional Information
Noriko Yui
Affiliation:
Department of Mathematics, Queen’s University, Kingston, Ontario, Canada K7L 3N6
Email:
yui@ny.mast.queensu.ca
Don Zagier
Affiliation:
Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, 53225 Bonn, Germany
Email:
zagier@mpim-bonn.mpg.de
DOI:
https://doi.org/10.1090/S0025-5718-97-00854-5
Received by editor(s):
June 8, 1994
Received by editor(s) in revised form:
June 19, 1996
Article copyright:
© Copyright 1997
American Mathematical Society