Tables of unit groups and class groups of quintic fields and a regulator bound
Authors:
M. Pohst and K. Wildanger
Journal:
Math. Comp. 67 (1998), 361-367
MSC (1991):
Primary 11Y40; Secondary 11R27, 11R29
DOI:
https://doi.org/10.1090/S0025-5718-98-00927-2
MathSciNet review:
1451326
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Using a new regulator bound we determine unit groups and class groups of the 289040 quintic algebraic number fields with absolute discriminant less than $2 \times 10^7$ (totally real fields), respectively $5 \times 10^6$ (other signatures). We list significant data.
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206
- M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig and K. Wildanger, KANT V4, to appear in J. Symbolic Comp.
- Michael E. Pohst, Computational algebraic number theory, DMV Seminar, vol. 21, Birkhäuser Verlag, Basel, 1993. MR 1243639
- M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press, Cambridge, 1989. MR 1033013
- A. Schwarz, M. Pohst, and F. Diaz y Diaz, A table of quintic number fields, Math. Comp. 63 (1994), no. 207, 361–376. MR 1219705, DOI https://doi.org/10.1090/S0025-5718-1994-1219705-3
Retrieve articles in Mathematics of Computation with MSC (1991): 11Y40, 11R27, 11R29
Retrieve articles in all journals with MSC (1991): 11Y40, 11R27, 11R29
Additional Information
M. Pohst
Affiliation:
Technische Universität Berlin, Fachbereich 3 Mathematik, Sekr. MA 8-1, Straße des 17. Juni 136, D–10623 Berlin, Germany
Email:
pohst@math.tu-berlin.de
K. Wildanger
Affiliation:
Technische Universität Berlin, Fachbereich 3 Mathematik, Sekr. MA 8-1, Straße des 17. Juni 136, D–10623 Berlin, Germany
Email:
wildan@math.tu-berlin.de
Received by editor(s):
November 13, 1995
Article copyright:
© Copyright 1998
American Mathematical Society