Tables of unit groups and class groups of quintic fields and a regulator bound
HTML articles powered by AMS MathViewer
- by M. Pohst and K. Wildanger PDF
- Math. Comp. 67 (1998), 361-367 Request permission
Abstract:
Using a new regulator bound we determine unit groups and class groups of the 289040 quintic algebraic number fields with absolute discriminant less than $2 \times 10^7$ (totally real fields), respectively $5 \times 10^6$ (other signatures). We list significant data.References
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig and K. Wildanger, KANT V4, to appear in J. Symbolic Comp.
- Michael E. Pohst, Computational algebraic number theory, DMV Seminar, vol. 21, Birkhäuser Verlag, Basel, 1993. MR 1243639, DOI 10.1007/978-3-0348-8589-8
- M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press, Cambridge, 1989. MR 1033013, DOI 10.1017/CBO9780511661952
- A. Schwarz, M. Pohst, and F. Diaz y Diaz, A table of quintic number fields, Math. Comp. 63 (1994), no. 207, 361–376. MR 1219705, DOI 10.1090/S0025-5718-1994-1219705-3
Additional Information
- M. Pohst
- Affiliation: Technische Universität Berlin, Fachbereich 3 Mathematik, Sekr. MA 8-1, Straße des 17. Juni 136, D–10623 Berlin, Germany
- Email: pohst@math.tu-berlin.de
- K. Wildanger
- Affiliation: Technische Universität Berlin, Fachbereich 3 Mathematik, Sekr. MA 8-1, Straße des 17. Juni 136, D–10623 Berlin, Germany
- Email: wildan@math.tu-berlin.de
- Received by editor(s): November 13, 1995
- © Copyright 1998 American Mathematical Society
- Journal: Math. Comp. 67 (1998), 361-367
- MSC (1991): Primary 11Y40; Secondary 11R27, 11R29
- DOI: https://doi.org/10.1090/S0025-5718-98-00927-2
- MathSciNet review: 1451326