Computing ray class groups, conductors and discriminants
HTML articles powered by AMS MathViewer
- by H. Cohen, F. Diaz y Diaz and M. Olivier PDF
- Math. Comp. 67 (1998), 773-795 Request permission
Abstract:
We use the algorithmic computation of exact sequences of Abelian groups to compute the complete structure of $(\mathbb {Z}_{K}/\mathfrak {m})^{*}$ for an ideal $\mathfrak {m}$ of a number field $K$, as well as ray class groups of number fields, and conductors and discriminants of the corresponding Abelian extensions. As an application we give several number fields with discriminants less than previously known ones.References
- Eric Bach, James Driscoll, and Jeffrey Shallit, Factor refinement, J. Algorithms 15 (1993), no. 2, 199–222. MR 1231441, DOI 10.1006/jagm.1993.1038
- J. W. S. Cassels and A. Fröhlich (eds.), Algebraic number theory, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967. MR 0215665
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Henri Cohen, Hermite and Smith normal form algorithms over Dedekind domains, Math. Comp. 65 (1996), no. 216, 1681–1699. MR 1361805, DOI 10.1090/S0025-5718-96-00766-1
- Henri Cohen and Francisco Diaz y Diaz, A polynomial reduction algorithm, Sém. Théor. Nombres Bordeaux (2) 3 (1991), no. 2, 351–360 (English, with French summary). MR 1149802, DOI 10.5802/jtnb.55
- H. Cohen, F. Diaz y Diaz and M. Olivier, Algorithmic methods for finitely generated Abelian groups, submitted to J. of Symbolic Computation 1996.
- M. Daberkow and M. Pohst, Computations with relative extensions of number fields with an application to the construction of Hilbert class fields, Proc. ISAAC’95 (1995) (to appear).
- F. Diaz y Diaz and M. Olivier, Algorithmique Algébrique dans les Corps de Nombres, Etat de la Recherche en Algorithmique Arithmétique, Laboratoire A2X, Bordeaux, 1995.
- George Havas and Bohdan S. Majewski, Hermite normal form computation for integer matrices, Proceedings of the Twenty-fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994), 1994, pp. 87–96. MR 1382439
- Erich Hecke, Lectures on the theory of algebraic numbers, Graduate Texts in Mathematics, vol. 77, Springer-Verlag, New York-Berlin, 1981. Translated from the German by George U. Brauer, Jay R. Goldman and R. Kotzen. MR 638719, DOI 10.1007/978-1-4757-4092-9
- Armin Leutbecher, Euclidean fields having a large Lenstra constant, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 2, 83–106 (English, with French summary). MR 786536, DOI 10.5802/aif.1011
- Armin Leutbecher and Gerhard Niklasch, On cliques of exceptional units and Lenstra’s construction of Euclidean fields, Number theory (Ulm, 1987) Lecture Notes in Math., vol. 1380, Springer, New York, 1989, pp. 150–178. MR 1009799, DOI 10.1007/BFb0086551
- Jacques Martinet, Petits discriminants des corps de nombres, Number theory days, 1980 (Exeter, 1980) London Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 151–193 (French). MR 697261
- Norikata Nakagoshi, The structure of the multiplicative group of residue classes modulo ${\mathfrak {p}}^{N+1}$, Nagoya Math. J. 73 (1979), 41–60. MR 524007, DOI 10.1017/S0027763000018316
- A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119–141 (English, with French summary). MR 1061762, DOI 10.5802/jtnb.22
- M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press, Cambridge, 1989. MR 1033013, DOI 10.1017/CBO9780511661952
- X.-F. Roblot, Unités de Stark et corps de classes de Hilbert, C. R. Acad. Sci. Paris 323 (1996), 1165–1168.
- H. Zantema, Class numbers and units, Computational methods in number theory, Part II, Math. Centre Tracts, vol. 155, Math. Centrum, Amsterdam, 1982, pp. 213–234. MR 702518
Additional Information
- H. Cohen
- Affiliation: Laboratoire A2X, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France
- Email: cohen@math.u-bordeaux.fr
- F. Diaz y Diaz
- Affiliation: Laboratoire A2X, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France
- Email: diaz@math.u-bordeaux.fr
- M. Olivier
- Affiliation: Laboratoire A2X, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France
- Email: olivier@math.u-bordeaux.fr
- Received by editor(s): February 19, 1996
- Received by editor(s) in revised form: October 30, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Math. Comp. 67 (1998), 773-795
- MSC (1991): Primary 11R37, 11Y40
- DOI: https://doi.org/10.1090/S0025-5718-98-00912-0
- MathSciNet review: 1443117