The number of lattice points in alcoves and the exponents of the finite Weyl groups
HTML articles powered by AMS MathViewer
- by Ruedi Suter PDF
- Math. Comp. 67 (1998), 751-758 Request permission
Abstract:
We count lattice points in certain rational simplices associated with an irreducible finite Weyl group $W$ and observe that these numbers are linked to the exponents of $W$.References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Michel Brion, Points entiers dans les polytopes convexes, Astérisque 227 (1995), Exp. No. 780, 4, 145–169 (French, with French summary). Séminaire Bourbaki, Vol. 1993/94. MR 1321646
- Kenneth S. Brown, Buildings, Springer-Verlag, New York, 1989. MR 969123, DOI 10.1007/978-1-4612-1019-1
- D. A. Cox, Recent developments in toric geometry. (to appear in the Proceedings of the 1995 Santa Cruz Summer Institute)
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
Additional Information
- Ruedi Suter
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
- Address at time of publication: Mathematik, Eidgenössische Technische Hochschule Zürich, ETH Zentrum, 8092 Zürich, Switzerland
- Email: suter@math.ethz.ch
- Received by editor(s): September 3, 1996
- Additional Notes: Supported by the Swiss National Science Foundation
- © Copyright 1998 American Mathematical Society
- Journal: Math. Comp. 67 (1998), 751-758
- MSC (1991): Primary 20F55; Secondary 05A15, 11P21, 11P83, 17B20, 17B67, 52B20
- DOI: https://doi.org/10.1090/S0025-5718-98-00919-3
- MathSciNet review: 1443124