Approximation properties of multivariate wavelets
HTML articles powered by AMS MathViewer
- by Rong-Qing Jia PDF
- Math. Comp. 67 (1998), 647-665 Request permission
Abstract:
Wavelets are generated from refinable functions by using multiresolution analysis. In this paper we investigate the approximation properties of multivariate refinable functions. We give a characterization for the approximation order provided by a refinable function in terms of the order of the sum rules satisfied by the refinement mask. We connect the approximation properties of a refinable function with the spectral properties of the corresponding subdivision and transition operators. Finally, we demonstrate that a refinable function in $W_{1}^{k-1}(\mathbb {R}^{s})$ provides approximation order $k$.References
- José Barros-Neto, An introduction to the theory of distributions, Pure and Applied Mathematics, vol. 14, Marcel Dekker, Inc., New York, 1973. MR 0461128
- Carl de Boor, The polynomials in the linear span of integer translates of a compactly supported function, Constr. Approx. 3 (1987), no. 2, 199–208. MR 889555, DOI 10.1007/BF01890564
- Carl de Boor, Ronald A. DeVore, and Amos Ron, Approximation from shift-invariant subspaces of $L_2(\mathbf R^d)$, Trans. Amer. Math. Soc. 341 (1994), no. 2, 787–806. MR 1195508, DOI 10.1090/S0002-9947-1994-1195508-X
- C. de Boor and K. Höllig, Approximation order from bivariate $C^{1}$-cubics: a counterexample, Proc. Amer. Math. Soc. 87 (1983), no. 4, 649–655. MR 687634, DOI 10.1090/S0002-9939-1983-0687634-4
- C. de Boor, K. Höllig, and S. Riemenschneider, Box splines, Applied Mathematical Sciences, vol. 98, Springer-Verlag, New York, 1993. MR 1243635, DOI 10.1007/978-1-4757-2244-4
- C. de Boor and R. Q. Jia, A sharp upper bound on the approximation order of smooth bivariate PP functions, J. Approx. Theory 72 (1993), no. 1, 24–33. MR 1198370, DOI 10.1006/jath.1993.1003
- Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), no. 453, vi+186. MR 1079033, DOI 10.1090/memo/0453
- Ingrid Daubechies and Jeffrey C. Lagarias, Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23 (1992), no. 4, 1031–1079. MR 1166574, DOI 10.1137/0523059
- Ronald A. DeVore, Björn Jawerth, and Vasil Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992), no. 4, 737–785. MR 1175690, DOI 10.2307/2374796
- T. N. T. Goodman, Charles A. Micchelli, and J. D. Ward, Spectral radius formulas for subdivision operators, Recent advances in wavelet analysis, Wavelet Anal. Appl., vol. 3, Academic Press, Boston, MA, 1994, pp. 335–360. MR 1244611
- K. Gröchenig and W. R. Madych, Multiresolution analysis, Haar bases, and self-similar tilings of $\textbf {R}^n$, IEEE Trans. Inform. Theory 38 (1992), no. 2, 556–568. MR 1162214, DOI 10.1109/18.119723
- B. Han and R. Q. Jia, Multivariate refinement equations and subdivision schemes, manuscript.
- Christopher Heil, Gilbert Strang, and Vasily Strela, Approximation by translates of refinable functions, Numer. Math. 73 (1996), no. 1, 75–94. MR 1379281, DOI 10.1007/s002110050185
- Rong Qing Jia, A dual basis for the integer translates of an exponential box spline, Rocky Mountain J. Math. 23 (1993), no. 1, 223–242. MR 1212738, DOI 10.1216/rmjm/1181072618
- Rong Qing Jia, A Bernstein-type inequality associated with wavelet decomposition, Constr. Approx. 9 (1993), no. 2-3, 299–318. MR 1215774, DOI 10.1007/BF01198008
- Rong Qing Jia, The Toeplitz theorem and its applications to approximation theory and linear PDEs, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2585–2594. MR 1277117, DOI 10.1090/S0002-9947-1995-1277117-8
- R. Q. Jia, Refinable shift-invariant spaces: from splines to wavelets, Approximation Theory VIII (C. K. Chui and L. L. Schumaker, eds.), vol. 2, World Scientific Publishing Co., Inc., 1995, pp. 179–208.
- R. Q. Jia, The subdivision and transition operators associated with a refinement equation, Advanced Topics in Multivariate Approximation (F. Fontanella, K. Jetter and P.-J. Laurent, eds.), World Scientific Publishing Co., Inc., 1996, pp. 139–154.
- Rong Qing Jia and Charles A. Micchelli, On linear independence for integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 1, 69–85. MR 1200188, DOI 10.1017/S0013091500005903
- R.-Q. Jia and C. A. Micchelli, Using the refinement equation for the construction of pre-wavelets. V. Extensibility of trigonometric polynomials, Computing 48 (1992), no. 1, 61–72 (English, with German summary). MR 1162384, DOI 10.1007/BF02241706
- Amos Ron, A characterization of the approximation order of multivariate spline spaces, Studia Math. 98 (1991), no. 1, 73–90. MR 1110099, DOI 10.4064/sm-98-1-73-90
Additional Information
- Rong-Qing Jia
- Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- Email: jia@xihu.math.ualberta.ca
- Received by editor(s): April 17, 1996
- Additional Notes: Supported in part by NSERC Canada under Grant OGP 121336.
- © Copyright 1998 American Mathematical Society
- Journal: Math. Comp. 67 (1998), 647-665
- MSC (1991): Primary 41A25, 41A63; Secondary 42C15, 65D15
- DOI: https://doi.org/10.1090/S0025-5718-98-00925-9
- MathSciNet review: 1451324