Multilevel additive Schwarz method for the $h$-$p$ version of the Galerkin boundary element method
Authors:
Norbert Heuer, Ernst P. Stephan and Thanh Tran
Journal:
Math. Comp. 67 (1998), 501-518
MSC (1991):
Primary 65N55, 65N38
DOI:
https://doi.org/10.1090/S0025-5718-98-00926-0
MathSciNet review:
1451325
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We study a multilevel additive Schwarz method for the $h$-$p$ version of the Galerkin boundary element method with geometrically graded meshes. Both hypersingular and weakly singular integral equations of the first kind are considered. As it is well known the $h$-$p$ version with geometric meshes converges exponentially fast in the energy norm. However, the condition number of the Galerkin matrix in this case blows up exponentially in the number of unknowns $M$. We prove that the condition number $\kappa (P)$ of the multilevel additive Schwarz operator behaves like $O(\sqrt {M}\log ^2M)$. As a direct consequence of this we also give the results for the $2$-level preconditioner and also for the $h$-$p$ version with quasi-uniform meshes. Numerical results supporting our theory are presented.
- M. Ainsworth, A preconditioner based on domain decomposition for $h$-$p$ finite element approximation on quasi-uniform meshes, SIAM J. Numer. Anal. 33 (1996), no. 4, 1358–1376.
- I. Babuška, A. Craig, J. Mandel, and J. Pitkäranta, Efficient preconditioning for the $p$-version finite element method in two dimensions, SIAM J. Numer. Anal. 28 (1991), no. 3, 624–661. MR 1098410, DOI https://doi.org/10.1137/0728034
- I. Babuška, B. Q. Guo, and E. P. Stephan, The $h$-$p$ version of the boundary element method with geometric mesh on polygonal domains, Comput. Methods Appl. Mech. Engrg. 80 (1990), no. 1-3, 319–325. Spectral and high order methods for partial differential equations (Como, 1989). MR 1067959, DOI https://doi.org/10.1016/0045-7825%2890%2990036-L
- I. Babuška, B. Q. Guo, and E. P. Stephan, On the exponential convergence of the $h$-$p$ version for boundary element Galerkin methods on polygons, Math. Methods Appl. Sci. 12 (1990), no. 5, 413–427. MR 1053063, DOI https://doi.org/10.1002/mma.1670120506
- James H. Bramble and Joseph E. Pasciak, New estimates for multilevel algorithms including the $V$-cycle, Math. Comp. 60 (1993), no. 202, 447–471. MR 1176705, DOI https://doi.org/10.1090/S0025-5718-1993-1176705-9
- James H. Bramble, Joseph E. Pasciak, and Jinchao Xu, Parallel multilevel preconditioners, Math. Comp. 55 (1990), no. 191, 1–22. MR 1023042, DOI https://doi.org/10.1090/S0025-5718-1990-1023042-6
- Carsten Carstensen and Ernst P. Stephan, A posteriori error estimates for boundary element methods, Math. Comp. 64 (1995), no. 210, 483–500. MR 1277764, DOI https://doi.org/10.1090/S0025-5718-1995-1277764-7
- Martin Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal. 19 (1988), no. 3, 613–626. MR 937473, DOI https://doi.org/10.1137/0519043
- M. Costabel and E. Stephan, The normal derivative of the double layer potential on polygons and Galerkin approximation, Applicable Anal. 16 (1983), no. 3, 205–228. MR 712733, DOI https://doi.org/10.1080/00036818308839470
- Maksymilian Dryja and Olof B. Widlund, Multilevel additive methods for elliptic finite element problems, Parallel algorithms for partial differential equations (Kiel, 1990) Notes Numer. Fluid Mech., vol. 31, Friedr. Vieweg, Braunschweig, 1991, pp. 58–69. MR 1167868
- V. J. Ervin, N. Heuer, and E. P. Stephan, On the $h$-$p$ version of the boundary element method for Symm’s integral equation on polygons, Comput. Methods Appl. Mech. Engrg. 110 (1993), no. 1-2, 25–38. MR 1255010, DOI https://doi.org/10.1016/0045-7825%2893%2990017-R
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- M. Hahne and E. P. Stephan, Schwarz iterations for the efficient solution of screen problems with boundary elements, Computing 56 (1996), no. 1, 61–85 (English, with English and German summaries). MR 1373509, DOI https://doi.org/10.1007/BF02238292
- N. Heuer, Additive Schwarz methods for weakly singular integral equations in $\mathbb {R}^3$ – the p-version, Boundary Elements: Implementation and Analysis of Advanced Algorithms (Braunschweig, Wiesbaden) (W. Hackbusch and G. Wittum, eds.), Notes on Numerical Fluid Mechanics, vol. 54, Vieweg-Verlag, 1996, Proceedings of the 12th GAMM-Seminar, Kiel, January 1996, pp. 126–135.
- ---, Efficient algorithms for the p-version of the boundary element method, J. Integral Equations Appl. 8 (1996), no. 3, 337–361.
- N. Heuer and E. P. Stephan, Boundary integral operators in countably normed spaces, Math. Nachr., to appear.
- ---, The hp-version of the boundary element method on polygons, J. Integral Equations Appl. 8 (1996), no. 2, 173–212.
- P.-L. Lions, On the Schwarz alternating method. I, First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987) SIAM, Philadelphia, PA, 1988, pp. 1–42. MR 972510
- J. C. Nedelec, La méthode des éléments finis appliquée aux équations intégrales de la physique, First Meeting AFCET-SMF on applied mathematics Palaiseau 1 (1978), 181–190.
- S. V. Nepomnyaschikh, Domain decomposition and Schwarz methods in a subspace for approximate solution of elliptic boundary value problems, Ph.D. thesis, Computing Center of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk, USSR, 1986.
- Luca F. Pavarino, Additive Schwarz methods for the $p$-version finite element method, Numer. Math. 66 (1994), no. 4, 493–515. MR 1254400, DOI https://doi.org/10.1007/BF01385709
- E. P. Stephan and M. Suri, On the convergence of the $p$-version of the boundary element Galerkin method, Math. Comp. 52 (1989), no. 185, 31–48. MR 947469, DOI https://doi.org/10.1090/S0025-5718-1989-0947469-5
- E. P. Stephan and M. Suri, The $h$-$p$ version of the boundary element method on polygonal domains with quasiuniform meshes, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 6, 783–807 (English, with French summary). MR 1135993, DOI https://doi.org/10.1051/m2an/1991250607831
- E. P. Stephan and T. Tran, Additive Schwarz algorithms for the $p$-version of the Galerkin boundary element method, Tech. Report, Institut für Angewandte Mathematik, Universität Hannover, 1997.
- Ernst P. Stephan and Wolfgang L. Wendland, An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems, Applicable Anal. 18 (1984), no. 3, 183–219. MR 767500, DOI https://doi.org/10.1080/00036818408839520
- T. Tran and E. P. Stephan, Additive Schwarz method for the h-version boundary element method, Appl. Anal. 60 (1996), 63–84.
- T. von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder – Singularitäten und Approximation mit Randelementmethoden, Ph.D. thesis, Technische Hochschule Darmstadt, Darmstadt, 1989.
- W. L. Wendland and E. P. Stephan, A hypersingular boundary integral method for two-dimensional screen and crack problems, Arch. Rational Mech. Anal. 112 (1990), no. 4, 363–390. MR 1077265, DOI https://doi.org/10.1007/BF02384079
- Olof B. Widlund, Optimal iterative refinement methods, Domain decomposition methods (Los Angeles, CA, 1988) SIAM, Philadelphia, PA, 1989, pp. 114–125. MR 992008
- Xuejun Zhang, Multilevel Schwarz methods, Numer. Math. 63 (1992), no. 4, 521–539. MR 1189535, DOI https://doi.org/10.1007/BF01385873
Retrieve articles in Mathematics of Computation with MSC (1991): 65N55, 65N38
Retrieve articles in all journals with MSC (1991): 65N55, 65N38
Additional Information
Norbert Heuer
Affiliation:
Institut für Wissenschaftliche Datenverarbeitung, Universität Bremen, Postfach 330440, 28334 Bremen, Germany
MR Author ID:
314970
Email:
heuer@iwd.uni-bremen.de
Ernst P. Stephan
Affiliation:
Institut für Angewandte Mathematik, Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
Email:
stephan@ifam.uni-hannover.de
Thanh Tran
Affiliation:
School of Mathematics, The University of New South Wales, Sydney 2052, Australia
Email:
thanh@maths.unsw.edu.au
Keywords:
$h$-$p$ version boundary integral equation method,
additive Schwarz operator,
multilevel method,
preconditioned conjugate gradient algorithm
Received by editor(s):
October 24, 1995
Received by editor(s) in revised form:
November 18, 1996
Additional Notes:
This work was started while the third author was visiting the Institut für Angewandte Mathematik at the University of Hannover. The work was partly supported by the DFG research group “Zuverlässigkeit von Modellierung und Berechnung in der Angewandten Mechanik” at the University of Hannover.
Article copyright:
© Copyright 1998
American Mathematical Society