Implicit-explicit multistep finite element methods for nonlinear parabolic problems
HTML articles powered by AMS MathViewer
- by Georgios Akrivis, Michel Crouzeix and Charalambos Makridakis PDF
- Math. Comp. 67 (1998), 457-477 Request permission
Abstract:
We approximate the solution of initial boundary value problems for nonlinear parabolic equations. In space we discretize by finite element methods. The discretization in time is based on linear multistep schemes. One part of the equation is discretized implicitly and the other explicitly. The resulting schemes are stable, consistent and very efficient, since their implementation requires at each time step the solution of a linear system with the same matrix for all time levels. We derive optimal order error estimates. The abstract results are applied to the Kuramoto-Sivashinsky and the Cahn-Hilliard equations in one dimension, as well as to a class of reaction diffusion equations in ${\mathbb {R}} ^{\nu },$ $\nu = 2, 3.$References
- Georgios Akrivis, High-order finite element methods for the Kuramoto-Sivashinsky equation, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 2, 157–183 (English, with English and French summaries). MR 1382109, DOI 10.1051/m2an/1996300201571
- S.M. Allen and J.W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (1979), 1085-1095.
- Michel Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques, Numer. Math. 35 (1980), no. 3, 257–276 (French, with English summary). MR 592157, DOI 10.1007/BF01396412
- Michel Crouzeix and Pierre-Arnaud Raviart, Approximation des équations d’évolution linéaires par des méthodes à pas multiples, C. R. Acad. Sci. Paris Sér. A-B 28 (1976), no. 6, Aiv, A367–A370 (French, with English summary). MR 426434
- Colin W. Cryer, A new class of highly-stable methods: $A_{0}$-stable methods, Nordisk Tidskr. Informationsbehandling (BIT) 13 (1973), 153–159. MR 323111, DOI 10.1007/bf01933487
- Charles M. Elliott and Zheng Songmu, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal. 96 (1986), no. 4, 339–357. MR 855754, DOI 10.1007/BF00251803
- L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992), no. 9, 1097–1123. MR 1177477, DOI 10.1002/cpa.3160450903
- R. D. Grigorieff and J. Schroll, Über $A(\alpha )$-stabile Verfahren hoher Konsistenzordnung, Computing 20 (1978), no. 4, 343–350 (German, with English summary). MR 619908, DOI 10.1007/BF02252382
- E. Hairer and G. Wanner, Solving ordinary differential equations. II, Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 1991. Stiff and differential-algebraic problems. MR 1111480, DOI 10.1007/978-3-662-09947-6
- Y. Kuramoto, Chemical oscillations, waves, and turbulence, Springer Series in Synergetics, vol. 19, Springer-Verlag, Berlin, 1984. MR 762432, DOI 10.1007/978-3-642-69689-3
- Marie-Noëlle Le Roux, Semi-discrétisation en temps pour les équations d’évolution paraboliques lorsque l’opérateur dépend du temps, RAIRO Anal. Numér. 13 (1979), no. 2, 119–137 (French, with English summary). MR 533878, DOI 10.1051/m2an/1979130201191
- W.R. McKinney, Optimal error estimates for high order Runge-Kutta methods applied to evolutionary equations, Ph.D. thesis, University of Tennessee, Knoxville, 1989.
- Basil Nicolaenko and Bruno Scheurer, Remarks on the Kuramoto-Sivashinsky equation, Phys. D 12 (1984), no. 1-3, 391–395. MR 762813, DOI 10.1016/0167-2789(84)90543-8
- D. T. Papageorgiou, C. Maldarelli, and D. S. Rumschitzki, Nonlinear interfacial stability of core-annular film flows, Phys. Fluids A 2 (1990), no. 3, 340–352. MR 1039780, DOI 10.1063/1.857784
- Giuseppe Savaré, $A(\Theta )$-stable approximations of abstract Cauchy problems, Numer. Math. 65 (1993), no. 3, 319–335. MR 1227025, DOI 10.1007/BF01385755
- Larry L. Schumaker, Spline functions: basic theory, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. MR 606200
- Eitan Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal. 17 (1986), no. 4, 884–893. MR 846395, DOI 10.1137/0517063
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR 953967, DOI 10.1007/978-1-4684-0313-8
- Vidar Thomée, Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics, vol. 1054, Springer-Verlag, Berlin, 1984. MR 744045
- Miloš Zlámal, Finite element multistep discretizations of parabolic boundary value problems, Math. Comp. 29 (1975), 350–359. MR 371105, DOI 10.1090/S0025-5718-1975-0371105-2
- Miloš Zlámal, Finite element methods for nonlinear parabolic equations, RAIRO Anal. Numér. 11 (1977), no. 1, 93–107, 113 (English, with French summary). MR 502073, DOI 10.1051/m2an/1977110100931
Additional Information
- Georgios Akrivis
- Affiliation: Department of Computer Science, University of Ioannina, 451 10 Ioannina, Greece
- MR Author ID: 24080
- Email: akrivis@cs.uoi.gr
- Michel Crouzeix
- Affiliation: IRMAR, Université de Rennes I, Campus de Beaulieu, F-35042 Rennes, France
- Email: michel.crouzeix@univ-rennes1.fr
- Charalambos Makridakis
- Affiliation: Department of Mathematics, University of Crete, 714 09 Heraklion, Crete, Greece, and IACM, Foundation for Research and Technology - Hellas, 711 10 Heraklion, Crete, Greece
- MR Author ID: 289627
- Email: makr@sargos.math.uch.gr
- Received by editor(s): July 3, 1995
- Received by editor(s) in revised form: December 8, 1995
- Additional Notes: The work of the first and third authors was supported in part by a research grant from the University of Crete
- © Copyright 1998 American Mathematical Society
- Journal: Math. Comp. 67 (1998), 457-477
- MSC (1991): Primary 65M60, 65M12; Secondary 65L06
- DOI: https://doi.org/10.1090/S0025-5718-98-00930-2
- MathSciNet review: 1458216