Implicit-explicit multistep finite element methods for nonlinear parabolic problems
Authors:
Georgios Akrivis, Michel Crouzeix and Charalambos Makridakis
Journal:
Math. Comp. 67 (1998), 457-477
MSC (1991):
Primary 65M60, 65M12; Secondary 65L06
DOI:
https://doi.org/10.1090/S0025-5718-98-00930-2
MathSciNet review:
1458216
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We approximate the solution of initial boundary value problems for nonlinear parabolic equations. In space we discretize by finite element methods. The discretization in time is based on linear multistep schemes. One part of the equation is discretized implicitly and the other explicitly. The resulting schemes are stable, consistent and very efficient, since their implementation requires at each time step the solution of a linear system with the same matrix for all time levels. We derive optimal order error estimates. The abstract results are applied to the Kuramoto-Sivashinsky and the Cahn-Hilliard equations in one dimension, as well as to a class of reaction diffusion equations in ${\mathbb {R}} ^{\nu },$ $\nu = 2, 3.$
- Georgios Akrivis, High-order finite element methods for the Kuramoto-Sivashinsky equation, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 2, 157–183 (English, with English and French summaries). MR 1382109, DOI https://doi.org/10.1051/m2an/1996300201571
- S.M. Allen and J.W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (1979), 1085-1095.
- Michel Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques, Numer. Math. 35 (1980), no. 3, 257–276 (French, with English summary). MR 592157, DOI https://doi.org/10.1007/BF01396412
- Michel Crouzeix and Pierre-Arnaud Raviart, Approximation des équations d’évolution linéaires par des méthodes à pas multiples, C. R. Acad. Sci. Paris Sér. A-B 28 (1976), no. 6, Aiv, A367–A370 (French, with English summary). MR 426434
- Colin W. Cryer, A new class of highly-stable methods: $A_{0}$-stable methods, Nordisk Tidskr. Informationsbehandling (BIT) 13 (1973), 153–159. MR 323111, DOI https://doi.org/10.1007/bf01933487
- Charles M. Elliott and Zheng Songmu, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal. 96 (1986), no. 4, 339–357. MR 855754, DOI https://doi.org/10.1007/BF00251803
- L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992), no. 9, 1097–1123. MR 1177477, DOI https://doi.org/10.1002/cpa.3160450903
- R. D. Grigorieff and J. Schroll, Über $A(\alpha )$-stabile Verfahren hoher Konsistenzordnung, Computing 20 (1978), no. 4, 343–350 (German, with English summary). MR 619908, DOI https://doi.org/10.1007/BF02252382
- E. Hairer and G. Wanner, Solving ordinary differential equations. II, Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 1991. Stiff and differential-algebraic problems. MR 1111480
- Y. Kuramoto, Chemical oscillations, waves, and turbulence, Springer Series in Synergetics, vol. 19, Springer-Verlag, Berlin, 1984. MR 762432
- Marie-Noëlle Le Roux, Semi-discrétisation en temps pour les équations d’évolution paraboliques lorsque l’opérateur dépend du temps, RAIRO Anal. Numér. 13 (1979), no. 2, 119–137 (French, with English summary). MR 533878, DOI https://doi.org/10.1051/m2an/1979130201191
- W.R. McKinney, Optimal error estimates for high order Runge-Kutta methods applied to evolutionary equations, Ph.D. thesis, University of Tennessee, Knoxville, 1989.
- Basil Nicolaenko and Bruno Scheurer, Remarks on the Kuramoto-Sivashinsky equation, Phys. D 12 (1984), no. 1-3, 391–395. MR 762813, DOI https://doi.org/10.1016/0167-2789%2884%2990543-8
- D. T. Papageorgiou, C. Maldarelli, and D. S. Rumschitzki, Nonlinear interfacial stability of core-annular film flows, Phys. Fluids A 2 (1990), no. 3, 340–352. MR 1039780, DOI https://doi.org/10.1063/1.857784
- Giuseppe Savaré, $A(\Theta )$-stable approximations of abstract Cauchy problems, Numer. Math. 65 (1993), no. 3, 319–335. MR 1227025, DOI https://doi.org/10.1007/BF01385755
- Larry L. Schumaker, Spline functions: basic theory, John Wiley & Sons, Inc., New York, 1981. Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 606200
- Eitan Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal. 17 (1986), no. 4, 884–893. MR 846395, DOI https://doi.org/10.1137/0517063
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR 953967
- Vidar Thomée, Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics, vol. 1054, Springer-Verlag, Berlin, 1984. MR 744045
- Miloš Zlámal, Finite element multistep discretizations of parabolic boundary value problems, Math. Comp. 29 (1975), 350–359. MR 371105, DOI https://doi.org/10.1090/S0025-5718-1975-0371105-2
- Miloš Zlámal, Finite element methods for nonlinear parabolic equations, RAIRO Anal. Numér. 11 (1977), no. 1, 93–107, 113 (English, with French summary). MR 502073, DOI https://doi.org/10.1051/m2an/1977110100931
Retrieve articles in Mathematics of Computation with MSC (1991): 65M60, 65M12, 65L06
Retrieve articles in all journals with MSC (1991): 65M60, 65M12, 65L06
Additional Information
Georgios Akrivis
Affiliation:
Department of Computer Science, University of Ioannina, 451 10 Ioannina, Greece
MR Author ID:
24080
Email:
akrivis@cs.uoi.gr
Michel Crouzeix
Affiliation:
IRMAR, Université de Rennes I, Campus de Beaulieu, F-35042 Rennes, France
Email:
michel.crouzeix@univ-rennes1.fr
Charalambos Makridakis
Affiliation:
Department of Mathematics, University of Crete, 714 09 Heraklion, Crete, Greece, and IACM, Foundation for Research and Technology - Hellas, 711 10 Heraklion, Crete, Greece
MR Author ID:
289627
Email:
makr@sargos.math.uch.gr
Received by editor(s):
July 3, 1995
Received by editor(s) in revised form:
December 8, 1995
Additional Notes:
The work of the first and third authors was supported in part by a research grant from the University of Crete
Article copyright:
© Copyright 1998
American Mathematical Society