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A CONVERGENCE THEOREM

FOR THE FAST MULTIPOLE METHOD

FOR 2 DIMENSIONAL SCATTERING PROBLEMS

CHRISTOPHE LABREUCHE

Abstract. The Fast Multipole Method (FMM) designed by V. Rokhlin rap-
idly computes the field scattered from an obstacle. This computation consists
of solving an integral equation on the boundary of the obstacle. The main
result of this paper shows the convergence of the FMM for the two dimensional
Helmholtz equation. Before giving the theorem, we give an overview of the
main ideas of the FMM. This is done following the papers of V. Rokhlin.
Nevertheless, the way we present the FMM is slightly different. The FMM is
finally applied to an acoustic problem with an impedance boundary condition.
The moment method is used to discretize this continuous problem.

1. Introduction

Many different numerical methods are available for the resolution of acoustic or
electromagnetic equations outside a bounded obstacle. The first class of numerical
methods can be called “volume methods” [10]. The open space outside the obstacle
is bounded by an artificial surface. The domain inside the artificial surface is meshed
and a proper boundary condition on the artificial surface must be introduced. The
main drawback of this approach is that it leads to a huge number of unknowns. If
the obstacle is impenetrable, an alternative method can be used based on integral
equations over the boundary of the obstacle [5]. The number of unknowns n arising
when discretizing such equations is relatively small, since only the boundary of the
obstacle is meshed. But, in return, since the kernels of the integral operators are
non-local, the discretization leads to a dense matrix Z. When the wave number k
times the size of the obstacle is large, the number of unknowns n necessary to get
good accuracy can be very large. For such large scale problems, the inversion of the
dense matrix Z is very tedious. Inverting a dense n×n matrix with a direct solver,
such as the LU decomposition, is an order n3 procedure. On the other hand, the
inversion can be performed by the mean of an iterative method, such as a conjugate
gradient type algorithm. Each iteration typically requires the computation of a
couple of scalar products and at least one multiplication of a vector by the matrix
Z. The number of operations for this is proportional to n2, since the matrix Z is
dense. Thus the overall cost of an iterative method is proportional to n2 times the
number of iterations.
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Using second kind integral equations and an appropriate preconditioner, the
number of iterations can be controlled. But the major task in order to get an
efficient acoustic or electromagnetic solver consists in writing a fast matrix-vector
multiplication routine. Methods that perform the matrix-vector multiplication in
an order nr operations, with r significantly lower than 2, are called “fast methods”.
In the literature, three main methods are designed to be fast in the previous sense.
The Fast Multipole Method (FMM) [14, 15, 16, 17, 18], which is the main focus of
this article, is the most popular one. The two others are the wavelet-based method
[8, 9, 4] and the Impedance Matrix Localization method [2, 3]. The idea of these
two latter methods is similar and has nothing to do with the FMM: The dense
matrix Z is approximated by a sparse matrix after an appropriate change of basis
elements.

The main reference to the FMM in two dimension is the original paper of V.
Rokhlin [14]. The convergence analysis of this method does not seem to appear
in the literature so far. This has actually been the main criticism of this method.
The purpose of this paper is to provide a rigorous proof for the acoustic problem
(Helmholtz equation) in two dimension. The proof is quite long and technical. This
emphasizes the subtleties and the complexity of the FMM.

In fact, there exists several FMM corresponding to different physical problems.
For instance, there is one FMM designed for the computation of long-range inter-
actions in particle systems (molecular dynamics simulations), which is described
in [6]. A proof of the convergence of the FMM in this case has been done by H.
Petersen et al. [12]. But this work cannot be used for the Helmholtz equation.

The FMM presented here is the basic version, leading to a matrix-vector mul-
tiplication in O(n3/2) operations. We would like to point out that more elaborate
versions of the FMM reduce the cost to O(n4/3) [14], or even O(n log n) [13] in its
multistep version.

To be consistent with the convergence proof given here, the FMM is presented in
its mathematical form. Most articles on this method insist on the physical basis of
this method which is the well-known “multipole method” designed to solve multiple
obstacle problems [11]. We rather dwell on the mathematical trickery of the FMM
which is the matrix-vector multiplication. Accordingly, the main feature of the
FMM is a special approximation of the fundamental solution to the Helmholtz
equation. The rest of the FMM is quite straightforward.

The layout of this paper is as follows. In Section 2, the necessary notation is
introduced and we give the main ideas of the FMM. In Section 3, the approxi-
mate form of the fundamental solution to the Helmholtz equation is derived. But
the convergence analysis and the justification of all the calculations done in Sec-
tion 3, is performed in Section 4. In this approximate form, an integral appears.
Numerically, this integral must be discretized. The convergence analysis of the dis-
cretized approximate form is thoroughly investigated in Section 5. In Section 6, the
convergence of the derivatives of the kernel is proved, and then we show that the
approximate matrix (defined with the approximate kernel) converges to the exact
matrix Z. Finally, the fast matrix-vector multiplication is explained in Section 7.
Three appendices can be found at the end of the paper (respectively Sections 9, 10
and 11). In Section 9, some formulae on Bessel and Hankel functions are recalled.
The basic form of the multipole formula is given in Section 10. The last section
gives some further results which are very useful in the convergence analysis. The
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Appendix to this paper contains equations (35) through (47), and Propositions 8
through 14.

2. Main ideas of the FMM

Let us begin with some notation: N∗ is the set of all strictly positive integers, N is
the set of all non-negative integers, Z is the set of all integers, R is the set of all real
numbers, and C is the set of all complex numbers. Throughout this paper, matrices,
vectors and points will be typed in bold characters, whereas scalar numbers will be
typed with standard letters. If x and y are two points of the plane R2, the vector
x − y is defined by its norm |x− y| and by arg(x − y) which represents the angle
between the horizontal axis and the vector x− y. The scalar product between two
vectors u and v of R2 is denoted by u ·v. The purely imaginary number

√−1 is
denoted by ı. The empty set is denoted by ∅. The wave number denoted by k will
be assumed to belong to the complex upper half plane =(k) ≥ 0. Let us define now
the Bessel and the Hankel functions [1]: Jm(z) is the Bessel function of order m

and argument z; H
(1)
m (z) is the Hankel function of the first kind and order m; and

Km(z) := ıπ
2 (ı)mH

(1)
m (ız) is the modified Hankel function of order m.

Let us consider an open bounded domain Ωi of R2 and denote its complement
by Ω := R2\Ωi. Γ is the boundary of Ωi. We denote by n the outer unit normal of
∂Ωi, that is the normal going from Ωi to Ω. Let us introduce the following system

∆u+ k2u = 0 in Ω,
∂u
∂n + ıζu = g on Γ,

lim|x|→∞
√|x|( ∂

∂|x|u(x)− ıku(x)
)

= 0.
(1)

The wave number is assumed to satisfy =(k) ≥ 0, so that the outgoing Sommerfeld
condition makes sense. The boundary condition considered here is the impedance
one (characterized by the impedance function ζ depending on k ∈ C and x ∈ Γ).
The analysis below can be extended with no difficulty to any classical boundary
condition. With some assumptions on ζ (namely, <(kζ̄) ≥ 0 for all k such that
=(k) ≥ 0) the above exterior problem has a unique solution ([5]). Moreover, u can
be given as the solution of an integral equation over the boundary Γ. The field u
can be written as a combination of single layer and the double layer potentials

u(x) = −ıṼ (ζv) (x)− K̃(v) (x), for x ∈ Ω,(2)

where the potential v defined on Γ is to be determined. The operators

Ṽ (v) (x) =

∫
Γ

G(x,x′) v(x′) dγ(x′) , K̃(v) (x) =

∫
Γ

∂G(x,x′)
∂n(x′)

v(x′) dγ(x′)

are defined for x 6∈ Γ. The fundamental solution to the Helmholtz equation is

G(x,x′) = ı
4H

(1)
0 (k|x− x′|). The advantage of integral representations is that

the Helmholtz equation and the outgoing Sommerfeld condition are automatically
satisfied. Then the potential v is determined by requiring that the impedance
boundary condition is satisfied, leading to [5]

D(v) + ı
(
ζK(v) +Kt(ζv)

)− ζV (ζv) = −g(3)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



556 CHRISTOPHE LABREUCHE

where the singular operators

V (w) (x) =

∫
Γ

G(x,x′)w(x′) dγ(x′) ,

K(v) (x) =

∫
Γ

∂G(x,x′)
∂n(x′)

v(x′) dγ(x′) ,

Kt(w) (x) =

∫
Γ

∂G(x,x′)
∂n(x)

w(x′) dγ(x′) ,

D(v) (x) =

∫
Γ

∂2G(x,x′)
∂n(x)∂n(x′)

v(x′) dγ(x′)

are defined for x ∈ Γ. Notice that (2) is only one possible representation of u.
The reason for taking (2), is that the four singular operators V , K, Kt and D are
present in the integral equation (3). Hence the convergence analysis for all four
integral operators will be performed in this paper.

The pseudo-differential operator D has a hypersingular kernel and thus must be
viewed in the sense of finite-parts ([7]). The discretization of (3) with any numerical
method (moment method, collocation, finite differences) leads to a dense matrix Z.
In Section 6, the moment method will be considered.

Now we describe the FMM. As said earlier, the cost of a matrix-vector multipli-
cation is O(n2), where n is the size of the dense matrix. But for some special forms
of matrices, this cost can be decreased a lot. Let us consider an n×n matrix A
whose elements take the form Aij = αiβj , for some complex numbers α1, · · · , αn,

and β1, · · · , βn. Then the multiplication of the matrix A by any vector

 x1

...
xn


can be done in a fast manner since

A·

 x1

...
xn

 =

 α1y
...

αny

 , where y =

n∑
i=1

βixi.

Hence it requires only 2n operations by using the following method: the calculation
of y is done only once and is used n times. So the first idea to perform a fast matrix-
vector multiplication can be stated as follows: some preliminary calculations
are done only once, then stored and used many times. The example of the
matrix A also motivates the second idea of the FMM: The terms Zij of the matrix
Z must be written as αiβj . Whatever the discretization may be, this means that
the kernel G(x,x′) must be written as (or approximated by) a function
of x times a function of x′, for all x,x′ ∈ Γ. Unfortunately, such a global
representation (or approximation) cannot be found. But we will show that G(x,x′)
can be locally approximated by a function of x times a function of x′. More
precisely, if Ai and Aj are two different subsets of the boundary Γ, an approximate
form of G(x,x′) will be given for all x ∈ Ai and x′ ∈ Aj . But the expression of the
approximation will be different for different sets Ai and Aj .

Let us now introduce some notation in order to give the approximate expression
of the kernel G. Γ is split into a cluster of say, p subsets A1 . . . Ap: Γ =

⋃p
i=1Ai,

with Ai ∩ Aj = ∅ if i 6= j. These subsets are referred to as “aggregates”. For the
aggregate Ai, a reference point zi is introduced. It is located roughly at the center
of the curve Ai. The point zi may or not be on the boundary Γ (see Figure 1).
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Figure 1. Location of the center zi of Ai.

Let U(θ) be the vector of R2 equal to

(
cos θ
sin θ

)
. Then for x ∈ Ai and x′ ∈ Aj ,

the kernel is approximated by the formula

G(x,x′) ≈ GCN (x,x′) :=
1

4π2

∫ 2π

0

exp(ık (x−zi)·U(θ)) exp(−ık (x′−zj)·U(θ))

·
[

N∑
m=−N

exp(ım (θ − arg(zi−zj)))K|m|(−ık |zi−zj|)
]
dθ(4)

for a suitable choice of N ∈ N∗ and i, j. The approximate kernel GCN is referred
to as the continuous approximated kernel. Obviously, GCN is well defined as
soon as i 6= j. Some quick numerical simulations can persuade the reader that the
approximation in (4) is very accurate, for a suitable choice of N ∈ N∗ and i, j. The
purpose of Theorem 2 in Section 4 is to give the values of i and j for which formula
(4) holds, and to give in this case an estimate of the error. Theorem 2 also explains
the meaning of the sign ≈ in (4).

The term in brackets in the right hand side of (4) does not converge absolutely
as N → ∞. Thus the limit of the right hand side of (4) when N → ∞ must be
taken in Cesaro’s sense. This means that the right hand side of (4) converges but
the limit is not equal to the value

1

4π2

∫ 2π

0

exp(ık (x−zi)·U(θ)) exp(−ık (x′−zj)·U(θ))

·
[∑
m∈Z

exp(ım (θ − arg(zi−zj)))K|m|(−ık |zi−zj|)
]
dθ

since this last term is not defined.
Let us notice that the approximate kernel in (4) takes roughly the following

form: a function of x times a function of x′. In fact, we also have an integration
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over [0, 2π]. We take care of this integration right now. Obviously, for numerical
considerations, the integral must be discretized. For this, we use the trapezoidal
rule: for any function F , we write

1

2π

∫ 2π

0

F (θ) dθ ≈ 1

NT

NT∑
nT=1

F (θnT ) ,

where θnT = 2π
NT

nT , and

NT = 2N + 1 .(5)

This reason of this choice will become clear in Section 5. Hence we also have

G(x,x′) ≈ GDN (x,x′) :=
1

2πNT

NT∑
nT=1

exp(ık (x−zi)·U(θnT ))

· exp(−ık (x′−zj)·U(θnT ))(6)

·
[

N∑
m=−N

exp(ım (θnT − arg(zi−zj)))K|m|(−ık |zi−zj|)
]
.

GDN is referred to as the discretized approximated kernel. (6) will be proved
to hold under the same sense as (4). Actually the proof of convergence of (6) is
not done just by combining (4) and a theorem of convergence of the summation
formula. The fact that NT is fixed at 2N + 1 makes the convergence analysis a
little more subtle.

3. Integral approximation of the Hankel function

The purpose of this section is to give a quick justification of (4). But the sense
of the sign “≈” will remain indefinite at the end of this section. The calculation of
the limit value of the right hand side of (4) is postponed to the next section (see
Lemma 1, Theorem 2 and Corollary 3).

Let us consider two different subsets Ai and Aj of Γ. Basically, we are interested
in deriving an approximated form of G(x,x′) for all x ∈ Ai and x′ ∈ Aj . In
this section let us fix x′ ∈ Aj and let Dzi , Dx′ , Dzj be three balls with centers
respectively zi, x

′ and zj (see Figure 1) chosen so thatDx′ ⊂ Dzj andDzi∩Dzj = ∅.
With the help of the two Propositions 9 and 10 (see Section 10 in the Appendix),

we are able to give another form of the kernel. At this point, the exact hypothesis
on i and j remains indefinite. As noticed before, we must at least assume that
i 6= j. Let us compute for x ∈ Dzi the function

G(x,x′) =
ı

4
H

(1)
0 (k |x−x′|) =

ı

4

∑
m∈Z

βmH
(1)
m (k |x−x′|) exp(ım arg(x−x′))

with β0 = 1 and βm = 0 if m 6= 0.
In order to use part (i) of Proposition 9, we have to verify the two assumptions

given in Proposition 9. First, β̃m (defined in Proposition 9) equals

β̃m = exp(−ım arg(x′−zj)) Jm(k |x′−zj|) .(7)

In addition, thanks to (36) and (37), one may write for |m| large enough∣∣∣β̃mH(1)
m (k |x−zj|)

∣∣∣ ≤ MJMH

π|m|
( |x′−zj|
|x−zj|

)|m|
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CONVERGENCE THEOREM FOR THE FMM IN 2D 559

Since x′ ∈ Dzj and x 6∈ Dzj , we have
|x′−zj|
|x−zj| < 1. Consequently,∑

m∈Z

∣∣∣β̃mH(1)
m (k |x−zj|)

∣∣∣
converges. Therefore by part (i) of Proposition 9, one can write

G(x,x′) =
ı

4

∑
m∈Z

β̃mH
(1)
m (k |x−zj|) exp(ımarg(x−zj)) .

Let us now use part (ii) of Proposition 9. The convergence of∑
l

∣∣∣β̃m−lH(1)
l (k |zi−zj|)

∣∣∣
will be shown in Lemma 1. Hence one can define

γm :=
∑
l∈Z

exp(−ıl( arg(zi−zj)− π)) β̃m−lH
(1)
l (k |zi−zj|) .

Moreover, by Corollary 3, the expansion
∑

m∈Z|γmJm(k |x−zi|)| converges. Then
using Proposition 9, part (ii), we get

G(x,x′) =
ı

4

∑
m∈Z

γmJm(k |x−zi|) exp(ımarg(x−zi)) .

Now we want to use Proposition 10. To satisfy the condition of Proposition 10,
the expansion in the definition of γm must be truncated. Consequently let us define
(for N ∈ N∗)

γ(N)
m :=

N∑
l=−N

exp(−ıl( arg(zi−zj)− π)) β̃m−lH
(1)
l (k |zi−zj|) .(8)

One can indeed show that
∑

m γm exp(ım(θ − π/2)) does not converge absolutely

whereas the expansion
∑

m γ
(N)
m exp(ım(θ − π/2)) converges absolutely. The proof

of this latter result is also postponed to Lemma 1. Thus

G(x,x′) ≈ GCN (x,x′) :=
ı

4

∑
m∈Z

γ(N)
m Jm(k |x−zi|) exp(ımarg(x−zi)) .

As a consequence of Proposition 10, we have

GCN (x,x′) =
ı

8π

∫ 2π

0

exp(ık |x−zi| cos(θ − arg(x−zi)))

·
[∑
m∈Z

γ(N)
m exp(ımθ) exp(−ımπ/2)

]
dθ.

Let us focus on the term in brackets,∑
m∈Z

γ(N)
m exp(ımθ) exp(−ımπ/2)

=
∑
m∈Z

N∑
l=−N

exp(−ıl( arg(zi−zj)− π)) β̃m−lH
(1)
l (k |zi−zj|) exp(ım (θ − π/2)) .
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By setting t = m− l and s = l, we have

∑
m∈Z

γ(N)
m exp(ımθ) exp(−ımπ/2) =

(∑
t∈Z

β̃t exp(ıt (θ − π/2))

)

·
(

N∑
s=−N

H(1)
s (k |zi−zj|) exp(−ıs(π/2− θ + arg(zi−zj)− π))

)
.

The first expansion in the right hand side converges and is equal to∑
t∈Z

β̃t exp(ıt (θ − π/2)) =
∑
t∈Z

exp(ıt (−π/2 + θ − arg(x′−zj))) Jt(k |x′−zj|) .

With (45), it follows that∑
t∈Z

β̃t exp(ıt (θ − π/2)) = exp(ık |x′−zj| sin(−π/2 + θ − arg(x′−zj)))

= exp(−ık |x′−zj| cos(θ − arg(x′−zj))) .

Finally

G(x,x′) ≈ GCN (x,x′)

=
ı

4

1

2π

∫ 2π

0

exp(ık |x−zi| cos(θ − arg(x−zi)))

· exp(−ık |x′−zj| cos(θ − arg(x′−zj)))

·
[

N∑
s=−N

H(1)
s (k |zi−zj|) exp(−ıs(−π/2− θ + arg(zi−zj)))

]
dθ .

A straightforward calculation shows that

G(x,x′) ≈ GCN (x,x′)

=
1

2π

∫ 2π

0

1

2π
exp(ık (x−zi)·U(θ)) exp(−ık (x′−zj)·U(θ)) τ

(N)
ij (θ) dθ(9)

where

τ
(N)
ij (θ) :=

N∑
m=−N

exp(−ım (−π/2− θ + arg(zi−zj)))(−ı)mKm(−ık |zi−zj|) .

By using both the definition of the modified Hankel function and the formula (35),
we have

K−|m|(−ız) =
ıπ

2
ı−|m|H(1)

−|m|(z) =
ıπ

2
(−ı)|m|(−1)

|m|
H|m|(z) = K|m|(−ız) .

Hence

τ
(N)
ij (θ) =

N∑
m=−N

exp(ım (θ − arg(zi−zj)))K|m|(−ık |zi−zj|) .(10)

By putting together (9) and (10), we get (4).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CONVERGENCE THEOREM FOR THE FMM IN 2D 561

4. Convergence analysis of the continuous approximated kernel

This section is devoted to proving the convergence of the approximation (4) as
N →∞, i.e. the error

G(x,x′)−GCN (x,x′) =
ı

4

∑
m∈Z

(
γm − γ(N)

m

)
Jm(k |x−zi|) exp(ımarg(x−zi))

when N → ∞. More generally, all the calculations of the previous section are
justified here.

The next lemma proves the convergence of the expansion γm and gives an upper

bound of the term
∣∣∣γm − γ

(N)
m

∣∣∣. In this section we assume that x ∈ Ai and x′ ∈ Aj ,

with i, j so chosen that Ai ⊂ Dzi and Aj ⊂ Dzj (where the balls Dzi , Dzj satisfy
the requirement of the previous section). Moreover, in the rest of this paper, we
will use the estimates (36) and (37) with the choice R = |k|maxi,j |zi−zj| and
R′ = |k|mini,j |zi−zj|.
Lemma 1. Let Λ be the smallest integer greater than the following four num-
bers :

C|k|2 max
i,j

|zi−zj|2 ,
e

2
|k|max

i,j
|zi−zj| ,

C|k|2 max
i

max
x∈Ai

|x−zi|2 ,
e

2
|k|max

i
max
x∈Ai

|x−zi| ,

where C is given in Proposition 8. We assume that γ
(N)
m is given by (8) and β̃m

by (7). Let Ai and Aj be two aggregates of Γ such that i 6= j. We consider x ∈ Ai

and x′ ∈ Aj such that |x−zi|
|zi−zj| < 1 and

|x′−zj|
|zi−zj| <

1√
e
. Then

• limN→∞ γ
(N)
m exists (we have convergence in norm) and the limit is equal to

γm.

• The expansion
∑

m∈Z γ
(N)
m exp(ım(θ − π/2)) converges absolutely for all θ ∈

R.
• Assume now that N > Λ. If |m| ≤ N − Λ, we have

∣∣∣γm − γ(N)
m

∣∣∣ ≤ C(−)

(
4N

|k| |x′−zj|
)|m| ( |x′−zj|

|zi−zj|

)N
(
1− |x′−zj|

|zi−zj|
)|m|(11)

and, if |m| > N − Λ, then∣∣∣γm − γ(N)
m

∣∣∣ ≤ C
(+)
1

(
2(|m|+ Λ)

e|k| |zi−zj|
)|m|+Λ

+ C
(+)
2

√
m

(
4|m|

e |k| |x′−zj|
)|m|(e

|x′−zj|
|zi−zj|

)|m|+Λ

(
1− |x′−zj|

|zi−zj|
)|m|(12)

where C(−), C
(+)
1 and C

(+)
2 are some constants which only depend on Λ.
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Proof. With (7) and (36), β̃m satisfies for |m| > C|k|2 |x′−zj|2, the inequality∣∣∣β̃m∣∣∣ ≤ MJ√
2π|m|

(
e |k| |x′−zj|

2|m|
)|m|

.(13)

Thanks to the definition of Λ, this relation holds in particular when |m| > Λ.

Let us set ∆
(m)
l := exp(−ıl( arg(zi−zj)− π)) β̃m−lH

(1)
l (k |zi−zj|). This is the

general term in the expansion of γm or γ
(N)
m .

• In order to study the convergence of γ
(N)
m as N → ∞, let us fix m ∈ N and

assume that N > m + Λ. We have γ
(N)
m =

∑N
l=−N ∆

(m)
l . Consider first the

case when l > m+ Λ. By (37) and (13), we have∣∣∣∆(m)
l

∣∣∣ ≤MH

√
2

πl

(
2l

e |k| |zi−zj|
)l

MJ√
2π(l −m)

(
e |k| |x′−zj|
2(l −m)

)l−m
,

which leads to∣∣∣∆(m)
l

∣∣∣ ≤ MJMH

π
√
l(l−m)

(
2

e |k| |x′−zj|
)m

ll

(l −m)l−m

( |x′−zj|
|zi−zj|

)l
.

Using the relation 1√
l(l−m)

≤ 1 and Proposition 11 part (i), we get

∣∣∣∆(m)
l

∣∣∣ ≤ MJMH

π

(
2

|k| |x′−zj|
)m

lm
( |x′−zj|
|zi−zj|

)l
if l > m+ Λ .(14)

Since
|x′−zj|
|zi−zj| < 1, the expansion

∑
l l
m

( |x′−zj|
|zi−zj|

)l
is convergent, which proves

that the expansion
∑

l≥m+Λ ∆
(m)
l converges absolutely.

Now, for l < −(m+ Λ), we arrive at∣∣∣∆(m)
l

∣∣∣ ≤ MJMH

π
√|l|(|l|+m)

(
e |k| |x′−zj|
2(|l|+m)

)|l|+m(
2|l|

e |k| |zi−zj|
)|l|

≤ MJMH

π
√|l| (|l|+m)

(
e |k| |x′−zj|

2

)m |l||l|
(|l|+m)

|l|+m

( |x′−zj|
|zi−zj|

)|l|
.

By Proposition 11 part (ii), we have |l||l|
(|l|+m)|l|+m

≤ e−m|l|−m. Therefore∣∣∣∆(m)
l

∣∣∣ ≤ MJMH

π

( |k| |x′−zj|
2

)m
1

|l|m
( |x′−zj|
|zi−zj|

)|l|
if l < −(m+ Λ) .(15)

Thus by using the same arguments as above, we can infer that
∑

l≤−(m+Λ)∆
(m)
l

converges absolutely. Hence, limN→∞ γ
(N)
m exists and is equal to

∑
l∈Z ∆

(m)
l =

γm.

• We now want to study the convergence of
∑

m∈Z γ
(N)
m exp(ım(θ − π/2)) for

N fixed. To this end, let us consider m ≥ N + Λ. We set

HN := max
−N≤l≤N

∣∣∣H(1)
l (k|zi − zj|)

∣∣∣ .
Hence∣∣∣γ(N)
m

∣∣∣ ≤ N∑
l=−N

∣∣∣β̃m−l∣∣∣∣∣∣H(1)
l (k |zi−zj|)

∣∣∣ ≤ (2N + 1)HN max
l=−N,... ,N

∣∣∣β̃m−l∣∣∣ .
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Σ 4 Σ 1 Σ 2 Σ 3

~~m-l     0
-N N m+Λm- Λ

m-l>>0 l-m>>0

m

l
m-l>>0

0

Figure 2. Location of the four sets, for m ∈ Z fixed.

Setting l′ = m− l, relation (13) yields

max
l=−N,... ,N

∣∣∣β̃m−l∣∣∣ ≤ MJ√
2π

max
m−N≤l′≤m+N

{(
e |k| |x′−zj|

2l′

)l′}
.

We apply Proposition 12 part (i) to x = l′, a = e
2 |k| |x′−zj| and y = m−N .

Since x ≥ y = m−N ≥ Λ ≥ e
2 |k| |x′−zj| = a, we have

max
l=−N,... ,N

∣∣∣β̃m−l∣∣∣ ≤ MJ√
2π

(
e |k| |x′−zj|
2(m−N)

)m−N
.

Hence ∣∣∣γ(N)
m

∣∣∣ ≤ MJ(2N + 1)√
2π

HN

(
e |k| |x′−zj|
2(m−N)

)m−N
.

Since N is fixed, we conclude that
∑∞

m=0

∣∣∣γ(N)
m

∣∣∣ < ∞. Similarly, the conver-

gence for the negative values of m can be shown. Therefore,∑
m∈Z

γ(N)
m exp(ım(θ − π/2))

converges uniformly for any θ.
• It remains to show the inequalities (11) and (12). Without loss of generality,

we assume that m is a nonnegative integer. The case m < 0 can be deduced
from the case m ≥ 0, thanks to formula (35). We now assume that N > Λ.

First, one notes that the truncation error is

γm − γ(N)
m =

∑
|l|>N

exp(−ıl( arg(zi−zj)− π)) β̃m−lH
(1)
l (k |zi−zj|) =

∑
|l|>N

∆
(m)
l .

In the last sum, the term H
(1)
l (k |zi−zj|) is considered for |l| > N > Λ,

so that it can always be bounded with the help of inequality (37). Formula

(13) enables one to bound β̃m−l when |m− l| > Λ. Finally, the two cases
l ≥ 0 and l < 0 must be taken into account. Due to these remarks, the set
Σ := {l ∈ Z, |l| > N} is split into four sets, as depicted in Figure 2: Σ1 :=
{l ∈ Z, N < l ≤ m− Λ} ∩ Σ, Σ2 := {l ∈ Z, m− Λ < l ≤ m+ Λ} ∩ Σ, Σ3 :=
{l ∈ Z, l > m+ Λ} ∩ Σ, and Σ4 :={l ∈ Z, l < −N}.

When 0 ≤ m ≤ N − Λ, the sets Σ1 and Σ2 are empty. When N − Λ <
m ≤ N + Λ, Σ1 = ∅. Finally, for m > N + Λ, the four sets have at least one
element.

Let us first consider the case m > N + Λ. We now give an upper bound of

∆
(m)
l on each of the four sets.
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(i) For l ∈ Σ1, we have, thanks to (37) and (13),∣∣∣∆(m)
l

∣∣∣ ≤MH

√
2

πl

(
2l

e |k| |zi−zj|
)l

MJ√
2π(m− l)

(
e |k| |x′−zj|
2(m− l)

)m−l
.

We apply Proposition 12 part (ii) to x = l, y = m − Λ and a =
e
2 |k| |zi−zj|. Since N < l ≤ m − Λ, we have y ≥ x > N > Λ ≥
e
2 |k| |zi−zj| = a, which implies that

1√
l

(
2l

e |k| |zi−zj|
)l
≤ 1√

N

(
2 (m− Λ)

e |k| |zi−zj|
)m−Λ

.

Since Λ ≤ m− l ≤ m−N and by the definition of Λ, we get

e |k| |x′−zj|
2 (m− l)

≤ e |k| |x′−zj|
2Λ

≤ e |k|maxj maxx′∈Aj |x′−zj|
2Λ

≤ 1 .

Therefore

1√
m− l

(
e |k| |x′−zj|
2(m− l)

)m−l
≤ 1√

Λ
.

Since the set Σ1 has m− Λ−N terms, we arrive at∑
l∈Σ1

∣∣∣∆(m)
l

∣∣∣ ≤ MJMH

π
√

Λ

m− Λ−N√
N

(
2(m− Λ)

e |k| |zi−zj|
)m−Λ

.

(ii) For l ∈ Σ2, the relation (42) is used to bound β̃m−l uniformly
∣∣∣β̃m−l∣∣∣ ≤

Cβ̃ . The constant Cβ̃ depends only on Λ and R. Thus∣∣∣∆(m)
l

∣∣∣ ≤ Cβ̃MH

√
2

πl

(
2l

e|k| |zi−zj|
)l

.

As in the previous item, one can show that the greatest term of
(

2l
e|k||zi−zj|

)l
for l ∈ Σ2 is obtained at l = m + Λ. Since Σ2 is composed of 2Λ terms,
one may write

∑
l∈Σ2

∣∣∣∆(m)
l

∣∣∣ ≤ 2ΛCβ̃MH

√
2

π(m− Λ)

(
2(m+ Λ)

e|k| |zi−zj|
)m+Λ

.

(iii) Let us consider the case when l ∈ Σ3. Since l > m+Λ, (14) implies that∑
l∈Σ3

∣∣∣∆(m)
l

∣∣∣ ≤ MJMH

π

(
2

|k| |x′−zj|
)m ∞∑

l=m+Λ

lm
( |x′−zj|
|zi−zj|

)l
.

By Proposition 13 with M = m, L = m+ Λ and x =
|x′−zj|
|zi−zj| <

1√
e
, we get

∑
l∈Σ3

∣∣∣∆(m)
l

∣∣∣ ≤ CgMJMH

π

(
2

|k| |x′−zj|
)m

(2(m+ Λ))m

( |x′−zj|
|zi−zj|

)m+Λ

(
1− |x′−zj|

|zi−zj|
)m+1 .
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(iv) We want to bound the sum
∑

l∈Σ4

∣∣∣∆(m)
l

∣∣∣ by
∑

l∈Σ3

∣∣∣∆(m)
l

∣∣∣ for anym ∈ N.

To this end, we define a function Lm which maps Σ4 onto Σ3. The
smallest element of the set Σ3 is equal to m+ Λ when m+ Λ > N and is
equal to N when m+Λ ≤ N . The mapping Lm is thus defined as follows:

Lm : Σ4 = ]−∞,−N [ ∩ Z → Σ3 = ]m+ Λ,∞[ ∩ Z if m+ Λ > N
l 7→ m+ Λ−N +|l|

and

Lm : Σ4 = ]−∞,−N [ ∩ Z → Σ3 = ]N,∞[ ∩ Z if m+ Λ ≤ N .
l 7→ |l|

When m + Λ > N , we apply Proposition 12 part (i) to x = |l| + m,
y = |l|−N+Λ and a = e

2 |k| |x′−zj|. For l ∈ Σ4, we have x ≥ y ≥ Λ ≥ a,
so that by (13)∣∣∣β̃m−l∣∣∣ ≤ MJ√

2π (|l|+m)

(
e |k| |x′−zj|
2 (|l|+m)

)|l|+m
≤ MJ√

2π (|l| −N + Λ)

(
e |k| |x′−zj|

2 (|l| −N + Λ)

)|l|−N+Λ

=
MJ√

2π (Lm(l)−m)

(
e |k| |x′−zj|

2 (Lm(l)−m)

)Lm(l)−m
.

Hence by (36) ∣∣∣β̃m−l∣∣∣ ≤ MJ

mJ

∣∣∣β̃Lm(l)−m
∣∣∣ .

Now if m+ Λ ≤ N , we directly have∣∣∣β̃m−l∣∣∣ ≤ MJ√
2π (|l| −m)

(
e |k| |x′−zj|
2 (|l| −m)

)|l|−m
≤ MJ

mJ

∣∣∣β̃Lm(l)−m
∣∣∣ .

Let us now considerH
(1)
l (k |zi−zj|). To bound this term, we apply Propo-

sition 12 part (ii) to x = |l|, y = Lm(l) and a = e
2 |k| |zi−zj|. For l ∈ Σ4

and in both cases m+ Λ > N and m+ Λ ≤ N , we have y ≥ x ≥ N ≥ a,
so that with (37)∣∣∣H(1)
l (k |zi−zj|)

∣∣∣ ≤ MH

√
2

π|l|
(

2|l|
e |k| |zi−zj|

)|l|

≤ MH

√
Lm(l)

|l|

√
2

πLm(l)

(
2Lm(l)

e |k| |zi−zj|
)Lm(l)

≤ MH

mH

√
Lm(l)

|l|
∣∣∣H(1)

Lm(l)(k |zi−zj|)
∣∣∣ .

When m+ Λ ≤ N , Lm(l) = |l|. When m+ Λ > N , we have

Lm(l)

|l| =
m+ Λ−N + |l|

|l| ≤ m+ Λ

|l| ≤ m+ Λ

N
.
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Therefore, in both cases m > N − Λ and m ≤ N − Λ, one may write
Lm(l)
|l| ≤ max

(
1, m+Λ

N

)
, and thus∣∣∣∆(m)

l

∣∣∣ =
∣∣∣β̃m−l∣∣∣∣∣∣H(1)

l (k |zi−zj|)
∣∣∣

≤ MJMH

mJmH
max

(
1,

√
m+ Λ

N

)∣∣∣β̃m−Lm(l)

∣∣∣∣∣∣H(1)
Lm(l)(k |zi−zj|)

∣∣∣
=

MJMH

mJmH
max

(
1,

√
m+ Λ

N

)∣∣∣∆(m)
Lm(l)

∣∣∣ .
Finally∑

l∈Σ4

∣∣∣∆(m)
l

∣∣∣ ≤ MJMH

mJmH
max

(
1,

√
m+ Λ

N

)∑
l∈Σ4

∣∣∣∆(m)
Lm(l)

∣∣∣
≤ MJMH

mJmH
max

(
1,

√
m+ Λ

N

)∑
l∈Σ3

∣∣∣∆(m)
l

∣∣∣ .
At this point, we have a bound of the sums

∑
l

∣∣∣∆(m)
l

∣∣∣ over the four sets Σ1,

Σ2, Σ3 and Σ4. Let us use them to bound
∣∣∣γm − γ

(N)
m

∣∣∣. The leading behavior

of the bounds of the sums on Σ1, Σ2 are nearly the same. More precisely, the
sum on Σ2 is greater than that on Σ1, i.e.∑

l∈Σ1

∣∣∣∆(m)
l

∣∣∣ ≤ ∑
l∈Σ2

∣∣∣∆(m)
l

∣∣∣ .
Let us first consider the case when m > N + Λ. The truncation error

becomes∣∣∣γm − γ(N)
m

∣∣∣ ≤ 2
∑
l∈Σ2

∣∣∣∆(m)
l

∣∣∣+(1 +
MJMH

mJmH
max

(
1,

√
m+ Λ

N

))∑
l∈Σ3

∣∣∣∆(m)
l

∣∣∣
≤ 4ΛCβ̃MH

√
2

π(m− Λ)

(
2(m+ Λ)

e|k| |zi−zj|
)m+Λ

+

(
1 +

MJMH

mJmH

)√
m+ Λ

N

CgMJMH

π

(
4(m+ Λ)

e |k| |x′−zj|
)m

em

( |x′−zj|
|zi−zj|

)m+Λ

(
1− |x′−zj|

|zi−zj|
)m+1 .

Since m > N+Λ ≥ Λ, we get
√

m+Λ
N ≤

√
2m
N . Then, the relation(m+ Λ)

m ≤
eΛmm yields

∣∣∣γm − γ(N)
m

∣∣∣ ≤ 4ΛCβ̃MH

√
2

π(m− Λ)

(
2(m+ Λ)

e|k| |zi−zj|
)m+Λ

+

(
1 +

MJMH

mJmH

)
CgMJMH

π

√
2m

N

(
4m

e |k| |x′−zj|
)m (

e
|x′−zj|
|zi−zj|

)m+Λ

(
1− |x′−zj|

|zi−zj|
)m+1 .
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Thus, when m > N + Λ, (12) holds for some constants C
(+)
1 and C

(+)
2 which

can be chosen independent of m and N .
When N − Λ < m ≤ N + Λ, the set Σ1 is empty and the sum on Σ2 is

not “full” in the sense that it is only composed of m+ Λ−N terms instead
of 2Λ as in the previous case. More precisely, Σ2 ={l ∈ Z , N < l ≤ m+ Λ}.
Since m+ Λ−N ≤ 2Λ, the same bound is attained

m+Λ∑
l=N+1

∣∣∣∆(m)
l

∣∣∣ ≤ 2ΛCβ̃MH

√
2

π(m− Λ)

(
2(m+ Λ)

e|k| |zi−zj|
)m+Λ

.

Thus, since
√

m+Λ
N ≤

√
1 + 2Λ

N ≤ √
3, (12) is also satisfied for N − Λ < m ≤

N + Λ, i.e.∣∣∣γm − γ(N)
m

∣∣∣ ≤ 2ΛCβ̃MH

√
2

π(m− Λ)

(
2(m+ Λ)

e|k| |zi−zj|
)m+Λ

+
√

3

(
1 +

MJMH

mJmH

)
CgMJMH

π

·
(

4m

e |k| |x′−zj|
)m (

e
|x′−zj|
|zi−zj|

)m+Λ

(
1− |x′−zj|

|zi−zj|
)m+1 .

Finally for 0 ≤ m ≤ N −Λ, the sum on Σ3 can be bounded as in part (iii)
of this proof (actually we only have to replace L = m + Λ by N when using
Proposition 13)

mJmH

MJMH

∑
l∈Σ4

∣∣∣∆(m)
l

∣∣∣ ≤ ∑
l∈Σ3

∣∣∣∆(m)
l

∣∣∣ ≤ CgMJMH

π

(
4N

|k| |x′−zj|
)m ( |x′−zj|

|zi−zj|

)N
(
1− |x′−zj|

|zi−zj|
)m+1 .

Therefore when 0 ≤ m ≤ N − Λ, we have

∣∣∣γm − γ(N)
m

∣∣∣ ≤(1 +
MJMH

mJmH

)
CgMJMH

π

(
4N

|k| |x′−zj|
)m ( |x′−zj|

|zi−zj|

)N
(
1− |x′−zj|

|zi−zj|
)m+1 .

which proves (11) for some constant C(−).

In (11) and (12), the term |x′−zj| can be removed from the denominators, so
that (11) and (12) hold for all x ∈ Dzi and x′ ∈ Dzj (even for x′ = zj).

The following theorem plays a central role in this paper since it proves the
convergence of the FMM.

Theorem 2. Let Λ be the smallest integer greater than the following four num-
bers

C|k|2 max
i,j

|zi−zj|2 ,
e

2
|k|max

i,j
|zi−zj| ,

C|k|2 max
i

max
x∈Ai

|x−zi|2 ,
e

2
|k|max

i
max
x∈Ai

|x−zi| ,
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where C is given in Proposition 8. Let Ai and Aj be two different aggregates. We
consider x ∈ Ai and x′ ∈ Aj such that

|x−zi|
|zi−zj| < 1 , e

|x′−zj|
|zi−zj| < 1 ,

|x′−zj|
|zi−zj| + 2e

|x−zi|
|zi−zj| < 1 .(16)

Then for all N > 2Λ, we have that∣∣G(x,x′)−GCN (x,x′)
∣∣ ≤ C1N

Λ

(
e
|x′−zj|
|zi−zj|

)N−Λ

+ C2N
Λ

( |x−zi|
|zi−zj|

)N−Λ

+C3N

 2e |x−zi||zi−zj|
1− |x′−zj|

|zi−zj|

N−Λ

(17)

where C1, C2 and C3 are independent of N . In particular, GCN (x,x′) converges
uniformly to G(x,x′) under the condition (16). We can give another condition
which is only sufficient, but which is symmetric in i and j : |x′−zj|

|zi−zj| <
1

1+2e ,
|x−zi|
|zi−zj| <

1
1+2e .

(18)

Proof. We only have to show (17). The rest of the theorem is straightforward. The
error of the FMM is∣∣G(x,x′)−GCN (x,x′)

∣∣ ≤ 1

4

∑
m∈Z

∣∣∣γm − γ(N)
m

∣∣∣ |Jm(|k| |x−zi|)| .

With the help of Lemma 1, the sum in the right hand side is split into two terms∣∣G(x,x′)−GCN (x,x′)
∣∣ ≤ S(−)

4
+
S(+)

4

where by Lemma 1

S(−) =
∑

|m|≤N−Λ

∣∣∣γm − γ(N)
m

∣∣∣ |Jm(|k| |x−zi|)|

≤
∑

|m|≤N−Λ

C(−)

(
4N

|k| |x′−zj|
)|m| ( |x′−zj|

|zi−zj|

)N
(
1− |x′−zj|

|zi−zj|
)|m| |Jm(|k| |x−zi|)|

and

S(+) =
∑

|m|>N−Λ

∣∣∣γm − γ(N)
m

∣∣∣ |Jm(|k| |x−zi|)|

≤
∑

|m|>N−Λ

C
(+)
1

(
2(|m|+ Λ)

e|k| |zi−zj|
)|m|+Λ

|Jm(|k| |x−zi|)|

+
∑

|m|>N−Λ

C
(+)
2

√
m

(
4|m|

e |k| |x′−zj|
)|m|(e

|x′−zj|
|zi−zj|

)|m|+Λ

(
1− |x′−zj|

|zi−zj|
)|m| |Jm(|k| |x−zi|)| .
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• Let us begin with S(−). By (36), we split S(−) into two sums, one when (36)
cannot be used (namely for 0 ≤ m ≤ Λ), and the other when (36) can be used
(namely for Λ + 1 ≤ m ≤ N − Λ). By symmetry, only positive values of m
have to be considered. Thus

S(−) ≤ 2C(−)

( |x′−zj|
|zi−zj|

)N Λ∑
m=0

(
4N

|k| |x′−zj|
)m |Jm(|k| |x−zi|)|(

1− |x′−zj|
|zi−zj|

)m
+ 2C(−)MJ

( |x′−zj|
|zi−zj|

)N N−Λ∑
m=Λ+1

(
2eN
m

)m
√

2πm

(
|x−zi|
|x′−zj|

)m
(
1− |x′−zj|

|zi−zj|
)m .

For 0 ≤ m ≤ Λ, the Bessel function satisfies Jm(|k| |x−zi|) ≤ Cβ̃ by (42).

Moreover, since |k| |zi−zj| ≤ 2
eΛ, we have

4N

|k| |x′−zj|
(
1− |x′−zj|

|zi−zj|
) ≥ 4N

|k| |x′−zj| ≥
2eN

Λ
≥ 2e > 1 .

Hence, the sequence
 4N

|k| |x′−zj|
(
1− |x′−zj|

|zi−zj|
)
m

0≤m≤Λ

is maximal when m = Λ.
In order to study the general term in the sum over Λ + 1 ≤ m ≤ N − Λ,

let us set

y :=
2e |x−zi||x′−zj|

1− |x′−zj|
|zi−zj|

.

Then

S(−) ≤ 2C(−)(Λ + 1)

(
4N

|k| |x′−zj|
)Λ Cβ̃(

1− |x′−zj|
|zi−zj|

)Λ

( |x′−zj|
|zi−zj|

)N

+ 2C(−)MJ

( |x′−zj|
|zi−zj|

)N N−Λ∑
m=Λ+1

1√
2π

(
y
N

m

)m
.

Now we want to give an upper bound for the function p(m) =
(
yNm
)m

for
Λ < m ≤ N − Λ. By setting γ = m

N , it is sufficient to find an upper bound

for the function q(γ) =
(
y
γ

)γ
for 0 < γ < 1, since maxΛ<m≤N−Λ p(m) ≤[

maxγ∈]0,1[ q(γ)
]N

. The maximum of q(γ) is given by Proposition 12. For
this, we must distinguish the following alternative:
(i) If y

e ≤ 1, then by Proposition 12 part (iv) with a = y, x = γ and A = 1,

we get maxγ∈]0,1[ q(γ) ≤ e. Hence
∑N−Λ

m=Λ+1

(
yNm
)m ≤ (N − 2Λ)eN , so
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that

S(−) ≤ 2C(−)Cβ̃(Λ + 1)

 4
|k||zi−zj|

1− |x′−zj|
|zi−zj|

Λ

NΛ

( |x′−zj|
|zi−zj|

)N−Λ

+
2C(−)MJ√

2π
(N − 2Λ)

(
e
|x′−zj|
|zi−zj|

)N
.(19)

(ii) If y
e > 1, then by Proposition 12 part (iii) with a = y, x = γ and A = 1,

we get maxγ∈]0,1[ q(γ) = q(1) = y. Thus
∑N−Λ

m=Λ+1

(
yNm
)m ≤ (N − 2Λ)yN ,

and

S(−) ≤ 2C(−)Cβ̃(Λ + 1)

 4
|k||zi−zj|

1− |x′−zj|
|zi−zj|

Λ

NΛ

( |x′−zj|
|zi−zj|

)N−Λ

+
2C(−)MJ(N − 2Λ)√

2π

( |x′−zj|
|zi−zj|

)N 2e |x−zi||x′−zj|
1− |x′−zj|

|zi−zj|

N

.(20)

• The sum S(+) is bounded in the same way. By (36)

S(+) ≤ 2C
(+)
1

∑
m>N−Λ

(
2(m+ Λ)

e|k| |zi−zj|
)m+Λ

MJ√
2πm

(
e |k| |x−zi|

2m

)m

+ 2C
(+)
2

∑
m>N−Λ

√
m

(
4m

e |k| |x′−zj|
)m(e

|x′−zj|
|zi−zj|

)m+Λ

(
1− |x′−zj|

|zi−zj|
)m

· MJ√
2πm

(
e |k| |x−zi|

2m

)m
.

Since m > N − Λ > 0, we have m ≥ 1. Hence by Proposition 11 part (iii)

(m+ Λ)
m+Λ

mm
≤ mΛ(Λ + 1)Λ+1 ,

which proves that

S(+) ≤ 2C
(+)
1 MJ√

2π

(Λ + 1)Λ+1

eΛ

∑
m>N−Λ

(
2m

|k| |zi−zj|
)Λ

1√
m

( |x−zi|
|zi−zj|

)m

+
2C

(+)
2 MJ√

2π

(
e |x′−zj|
|zi−zj|

)Λ ∑
m>N−Λ

 2e |x−zi||zi−zj|

1− |x′−zj|
|zi−zj|

m
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and by using Proposition 13 with L = N − Λ, M = Λ and x = |x−zi|
|zi−zj| <

1√
e
,

we attain to
∑

m>N−Λm
Λxm ≤ Cg(2(N − Λ))

Λ xN−Λ

(1−x)Λ+1 . Therefore

S(+) ≤ 2C
(+)
1 MJCg√

2π

(Λ + 1)Λ+1

eΛ

(
2

|k| |zi−zj|
)Λ

(2(N − Λ))Λ

(
|x−zi|
|zi−zj|

)N−Λ

(
1− |x−zi|

|zi−zj|
)Λ+1

+
2C

(+)
2 MJ√

2π

(
e |x′−zj|
|zi−zj|

)Λ

(
2e
|x−zi|
|zi−zj|

1−|x
′−zj|
|zi−zj|

)N−Λ

1−
2e
|x−zi|
|zi−zj|

1−|x
′−zj|
|zi−zj|

.(21)

In putting together the upper bounds (19), (20) and (21), one automatically
shows (17) for some constants C1, C2 and C3 independent of N . We also notice
that neither |x−zi| nor |x′−zj| appear in a denominator of C1, C2 or C3. Thus the
cases x = zi and x′ = zj are also included.

Corollary 3. The expansions
∑

m∈Z γ
(N)
m Jm(k |x−zi|) and

∑
m∈Z γmJm(k |x−zi|)

converge uniformly, under the conditions of Theorem 2.

Proof. From Lemma 1, the expansion
∑

m∈Z

∣∣∣γ(N)
m

∣∣∣ converges. Combining this with

(36), it is clear that
∑

m∈Z γ
(N)
m Jm(k |x−zi|) converges uniformly.

On the other hand, from the proof of Theorem 2, the factor∑
m∈Z

∣∣∣(γm − γ(N)
m )Jm(k |x−zi|)

∣∣∣
converges. Hence

∑
m∈Z γmJm(k |x−zi|) converges uniformly.

From Theorem 2, we see that the exact kernel cannot be replaced by an approxi-
mate one for all x and x′. Roughly speaking, convergence occurs when x is not too
close to x′. So let us investigate what the condition (18) means exactly. We assume
for the sake of simplicity and brevity that the boundary Γ of the obstacle is locally
planar (see Figure 3.a). We also assume that the length D of the aggregates Aj is

the same for all j. Then |x−zi| ≤ D
2 for all x ∈ Ai and |zi − zi+4| = 4D. Hence

|x−zi|
|zi−zi+4| ≤ 1

8 < 1
1+2e for all x ∈ Ai. Thanks to Theorem 2, the approximate kernel

converges to the exact one when N → ∞. Therefore, the FMM approximation
converges for all x ∈ Ai and x′ ∈ Aj , when Ai and Aj satisfy |i− j| ≥ 4.

This is again true when the curve Γ has a mild curvature. For the circle (see
Figure 3.b), if D is now referred to as the angle which covers one whole aggregate

Aj , then |x−zi|
|zi−zi+4| ≤

√
1−cos(D2 )
1−cos(4D) for all x ∈ Ai. This number is lower than 1

1+2e if

0 < D ≤ 32.2
o

. This condition on the size of the aggregates is not restrictive at
all.

Therefore, for a smooth obstacle, if the aggregate Ai is fixed, then all except 7
aggregates Aj generally satisfy the condition (18). For these 7 “nearby aggregates”
the classical kernel must be used, and for the p − 7 remaining aggregates (i.e. the
“remote aggregates”) the approximate kernel is used.
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Ai

zi

Aizi

x x’
x

D/2

D/2

fig.  a

fig.  b

D/2 D/2

3D

z

A

i+4

i+4

x’

z

Ai+4

i+4

3D

Figure 3. a: When Γ is locally a straight line. b: When Γ is
a circle of radius 1 [then we have |x−zi|2 ≤ 2

(
1− cos

(
D
2

))
and

|zi − zi+4|2 = 2(1− cos(4D)) ].

5. Convergence analysis of the discretized approximated kernel

Theorem 4. Let Λ be the smallest integer greater than the following four num-
bers

C|k|2 max
i,j

|zi−zj|2 ,
e

2
|k|max

i,j
|zi−zj| ,

C|k|2 max
i

max
x∈Ai

|x−zi|2 ,
e

2
|k|max

i
max
x∈Ai

|x−zi| ,

where C is given in Proposition 8. Let Ai and Aj be two different aggregates, and
let us consider x ∈ Ai and x′ ∈ Aj. Then for N > Λ, we have∣∣GCN (x,x′)−GDN (x,x′)

∣∣ ≤ C4

(
e|k|(|x−zi|+ |x′−zj|)

N

)N
+C5

√
N

(
2
|x−zi|+ |x′−zj|

|zi−zj|
)N

(22)

where C4 and C5 are independent of N .
Combining this with Theorem 2, GDN (x,x′) converges uniformly to G(x,x′) under

the condition (18).

Proof. Let us set r = |(x−zi)−(x′−zj)|, α = arg((x−zi)−(x′−zj)) and z = ıkr.
Then ık((x−zi)−(x′−zj))·U(θ) = z cos(θ − α). Hence by (9)

GCN (x,x′) =
1

4π2

∫ 2π

0

exp(z cos(θ − α)) τ
(N)
ij (θ)dθ .

Setting

ICm :=
1

2π

∫ 2π

0

exp(z cos(θ − α)) exp(ımθ) dθ ,

the continuous approximated kernel takes the form, thanks to (10),

GCN (x,x′) =
1

2π

N∑
m=−N

exp(−ım arg(zi−zj))K|m|(−ık |zi−zj|) ICm .
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By introducing

IDm :=
1

NT

NT∑
nT=1

exp

(
z cos

(
2πnT
NT

− α

))
exp

(
ım

2πnT
NT

)
,

the discretized approximated kernel can also be written as

GDN (x,x′) =
1

2π

N∑
m=−N

exp(−ım arg(zi−zj))K|m|(−ık |zi−zj|) IDm .

Consequently

GCN (x,x′)−GDN (x,x′) =
1

2π

N∑
m=−N

exp(−ım arg(zi−zj))

·K|m|(−ık |zi−zj|)
(ICm − IDm

)
.(23)

We notice that

r = |(x−zi)−(x′−zj)| ≤ |x−zi|+ |x′−zj| .(24)

For reasons of symmetry, we only consider positive values of m.

• One may write

ICm =
1

2π

∫ 2π

0

∞∑
l=0

zl cosl(θ − α)

l!
eımθdθ =

∞∑
l=0

zl

l!
ICl ,

where

ICl =
1

2π

∫ 2π

0

cosl(θ − α)eımθdθ =
1

2π

∫ 2π

0

[
eı(θ−α) + e−ı(θ−α)

2

]l
eımθdθ

=
1

2π

l∑
l1=0

Cl1
l

2l
exp(ı(l− 2l1)α)

∫ 2π

0

exp(ı(m− l + 2l1)θ) dθ

where Cl1
l = l!

l1!(l−l1)! . We remark that 1
2π

∫ 2π

0 eım1dθ is equal to 1 if m1 = 0

and vanishes for all other integer values of m1. Let us then consider the
following three cases:
(i) l < m: Then m− l + 2l1 never vanishes for l1 ∈{0, · · · , l}. Thus ICl = 0.
(ii) l ≥ m and l −m is odd: There is no integer l1 such that 2l1 = l − m.

Hence ICl = 0.
(iii) l ≥ m and l −m is even: Then m − l + 2l1 vanishes if and only if l1 =

l−m
2 ∈{0, · · · , l}. Hence ICl =

C
(l−m)/2
l

2l eımα.
Consequently

ICm = eımα
∞∑
l=m

zl

2ll!
C

(l−m)/2
l

(
1 + (−1)l−m

2

)
.(25)

We also conclude that when l is odd ICl = 0, and otherwise
∣∣ICl ∣∣ ≤ C

(l−m)/2
l

2l ≤∑l
l1=0 C

l1
l

2l = 1. Thus for all l ∈ N∣∣ICl ∣∣ ≤ 1 .(26)
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• Proceeding as in last step, one can show that

IDm =

∞∑
l=0

zl

l!
IDl ,

where

IDl =
l∑

l1=0

Cl1
l

2l
exp(ı(l − 2l1)α)Sm−l+2l1 ,

and Sm1 := 1
NT

∑NT

nT=1 exp
(
ım1

2πnT
NT

)
. Let us then consider the four follow-

ing cases
(i) l < m: Thanks to (5), we get m− l+ 2l1 ≤ m+ l < 2m ≤ 2N = NT − 1.

Moreover m− l+ 2l1 > 2l1 ≥ 0 for l1 ∈{0, · · · , l}. Hence by Proposition
14, IDl = 0.

(ii) l ≥ m, l −m is odd and l < NT −m: We have m− l+2l1 ≤ m+ l < NT

and m − l + 2l1 ≥ m − l > 2m − NT ≥ −NT (for l1 ∈ {0, · · · , l}) since
m is supposed to be positive. Hence |m − l + 2l1| ≤ NT − 1. Moreover
there is no integer l1 such that 2l1 = l−m. Therefore by Proposition 14,
IDl = 0.

(iii) l ≥ m, l −m is even and l < NT −m: As in the last step, |m− l+2l1| ≤
NT − 1. In addition, m − l + 2l1 vanishes if and only if l1 = l−m

2 ∈
{0, · · · , l}. Hence by Proposition 14, IDl =

C
(l−m)/2
l

2l
eımα.

(iv) l ≥ m, and l ≥ NT −m: We cannot give an explicit value of IDl in this

case. Anyway, since |Sm1 | ≤ 1 for any m1 ∈ Z, we have

∣∣IDl ∣∣ ≤ ∑l
l1=0 C

l1
l

2l
= 1 .

Hence

IDm = eımα
NT−m−1∑

l=m

zl

2ll!
C

(l−m)/2
l

(
1 + (−1)l−m

2

)
+

∞∑
l=NT−m

zl

l!
IDl .(27)

We also notice that for all l ∈ N∣∣IDl ∣∣ ≤ 1 .(28)

Combining (25) and (27), we have

ICm − IDm =

∞∑
l=NT−m

zl

l!

(
ICl − IDl

)
,

and with (26) and (28) ∣∣ICm − IDm
∣∣ ≤ 2

∞∑
l=NT−m

|z|l
l!

.

But for l ≥ NT −m, we have

|z|l
l!

=
|z|NT−m|z|l−NT+m

(NT −m)!l(l − 1) · · · (NT −m+ 1)
≤ |z|NT−m

(NT −m)!

|z|l−NT+m

(l −NT +m)!
.
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Hence setting l1 = l −NT +m, we get∣∣ICm − IDm
∣∣ ≤ 2

|z|NT−m

(NT −m)!

∞∑
l1=0

|z|l1
l1!

,

and ∣∣ICm − IDm
∣∣ ≤ 2e|z|

|z|NT−m

(NT −m)!
.(29)

By symmetry only positive values of m have to be considered. Hence the error
between GCN (x,x′) and GDN (x,x′) is∣∣GCN (x,x′)−GDN (x,x′)

∣∣ ≤ 1

4
2

N∑
m=0

∣∣∣H(1)
m (k |zi−zj|)

∣∣∣∣∣ICm − IDm
∣∣ .

When 0 ≤ m ≤ Λ, formula (43) enables us to bound H
(1)
m (k |zi−zj|). Otherwise

(37) is used, leading to∣∣GCN (x,x′)−GDN (x,x′)
∣∣ ≤ e|z|

Λ∑
m=0

Cα̃
|z|NT−m

(NT −m)!

+e|z|
N∑

m=Λ+1

MH

√
2

πm

(
2m

e |k| |zi−zj|
)m |z|NT−m

(NT −m)!
.

Moreover, by (38), we have NT −m ≥ Λ,

(NT −m)! ≥ Cmin

√
2π(NT −m)

(
NT −m

e

)NT−m
.

Hence since z = ıkr,∣∣GCN (x,x′)−GDN (x,x′)
∣∣ ≤ Cα̃e|z|

Cmin

Λ∑
m=0

1√
2π(NT −m)

(
e|k|r

NT −m

)NT−m

+
MHe|z|

Cmin

N∑
m=Λ+1

√
2

πm

(
2m

e |k| |zi−zj|
)m

1√
2π(NT −m)

(
e|k|r

NT −m

)NT−m
.

Let us apply Proposition 12 part (ii) to x = m, y = N and a =
e|k||zi−zj|

2 . If
m ≥ Λ + 1, then we verify that y ≥ x ≥ a, and thus(

2m

e |k| |zi−zj|
)m

≤
(

2N

e |k| |zi−zj|
)N

.

We now apply Proposition 12 part (i) to x = NT −m, y = N and a = e|k|r, which
satisfy x ≥ y ≥ a, since n ≤ N and NT = 2N + 1. Hence(

e|k|r
NT −m

)NT−m
≤
(

e|k|r
N

)N
,

so that∣∣GCN (x,x′)−GDN (x,x′)
∣∣ ≤ Cα̃e|z|

Cmin

√
2π

(Λ + 1)

(
e|k|r
N

)N
+

MHe|z|

Cminπ
√
N

(N − Λ)

(
2N

e |k| |zi−zj|
)N(

e|k|r
N

)N
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Consequently, thanks to (24), the theorem is proved.

The rest of the FMM only consists in linear steps. Consequently, the convergence
of the matrix-vector multiplication will also be exponential.

Remark 5. The last theorem proves the convergence of the discretized approxi-
mated kernel which is used numerically. Unfortunately, because of roundoff errors,
this convergence is not numerically attained. The main argument we give here is
that Proposition 14 becomes numerically S0 ≈ 1 and Sm is roughly equal to the
precision ε of the computer (say ε = 10−16) for 1 ≤ |m| ≤ NT − 1. Using this in
the proof of last theorem, we now get instead of (27)

IDm =

m−1∑
l=0

zl

l!
ε+ eımα

NT−m−1∑
l=m

zl

2ll!
C

(l−m)/2
l

(
1 + (−1)l−m

2
+ ε

)
+

∞∑
l=NT−m

zl

l!
IDl .

Hence there exists Cm such that

IDm = εCm + eımα
NT−m−1∑

l=m

zl

2ll!
C

(l−m)/2
l

(
1 + (−1)l−m

2

)
+

∞∑
l=NT−m

zl

l!
IDl ,

and

ICm − IDm = −εCm +

∞∑
l=NT−m

zl

l!

(
ICl − IDl

)
.(30)

We recall that∣∣GCN (x,x′)−GDN (x,x′)
∣∣ ≤ 1

2

N∑
m=0

∣∣∣H(1)
m (k |zi−zj|)

∣∣∣∣∣ICm − IDm
∣∣ .

The convergence of the second term in the right hand side of (30) has been shown
in the last theorem. Since Cm does not tend to zero when m tends to infinity, and ε

is fixed, one concludes that
∑N

m=0

∣∣∣H(1)
m (k |zi−zj|)

∣∣∣ ε|Cm| tends to infinity when N

tends to infinity. This proves that ICm−IDm does not numerically converge uniformly.
This quantity actually diverges. This is what one can in fact observe numerically
when taking N very large.

6. Moment method matrix of the FMM

Let us first define a mesh on Γ. As mentioned in Section 2, Γ is split into p
aggregates: Γ =

⋃p
i=1 Ai, with Ai ∩ Aj = ∅ if i 6= j. Each aggregate Ai is itself

divided into q elements: Ai =
⋃q
l=1 Γ(i,l) with Γ(i,l) ∩ Γ(j,l′) = ∅ if i 6= j or l 6= l′.

Thus there are n = pq elements Γ(i,l) of Γ. This is the mesh. The two extremities
of the element Γ(i,l) are denoted by x(i,l−1) and x(i,l). Here we use the moment

method with the P1 finite element basis. Let
{
f(i,l)

}
1≤i≤p,1≤l≤q be the triangular

P1 finite element basis defined on Γ: f(i,l) is affine on each element Γ(j,l′), and

f(i,l)
(
x(i,l)

)
= 1, f(i,l)

(
x(j,l′)

)
= 0 for j 6= i or l′ 6= i. The support of f(i,l) is

exactly Γ(i,l) ∪ Γ(i,l+1), with the notation Γ(i,q+1) = Γ(i+1,1) and Γ(p+1,1) = Γ(1,1)

by periodicity. Let us set Ãi := Ai ∪ Γ(i,q+1), so that the support of f(i,l) belongs

to Ãi for all 1 ≤ l ≤ q. For i fixed, we also denote by Wi the set of all the “remote

aggregates”, i.e. all Ãj such that (18) holds for all x ∈ Ãi, x′ ∈ Ãj . Ŵi := Γ\Wi is
the complementary set (composed of the “nearby aggregates”).
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Let Y be a function defined on Γ that belongs to the P1 finite element space
described earlier. If Y(i,l) := Y

(
x(i,l)

)
, then

Y (x) =

p∑
i=1

q∑
l=1

Y(i,l) f(i,l)(x) .

Then Y is associated with the vector Y :=
{
Y(i,l)

}
i,l

defined by the double index

(i, l). In the same way, the elements A(i,l),(j,l′) of any matrix A are defined by the
two double indexes (i, l) and (j, l′). The matrix-vector multiplication of the matrix
A by the vector Y is defined by

(A ·Y)(i,l) =

p∑
j=1

q∑
l′=1

A(i,j),(j,l′)Y(j,l′) .

The exact matrix Z which comes from the moment method discretization of (8)
is defined by its components Z(l,i),(l′,j) :

Z(l,i),(l′,j) =

∫
Γ

[
D
(
f(i,l)

)
+ iζK

(
f(i,l)

)
+iKt

(
ζf(i,l)

)
+ ζV

(
ζf(i,l)

)]
(x) f(j,l′)(x) dγ(x) .(31)

When Ãj 6⊂Wi, the approximate kernel GDN cannot be used and thus the exact
kernel is still employed. The FMM matrix is then

Z
(N)
(l,i),(l′,j) =

{
formula (31) with the approximate kernel GDN if Ãj ⊂Wi ,
Z(l,i),(l′,j) otherwise .

(32)

In order to prove the convergence of Z(N), let us begin with the following theo-
rem :

Theorem 6. Let i and j be such that Ãj ⊂Wi. Then

GDN (x,x′) N→∞−→ G(x,x′),

∂

∂n(x)
GDN (x,x′) N→∞−→ ∂

∂n(x)
G(x,x′),

∂

∂n(x′)
GDN (x,x′) N→∞−→ ∂

∂n(x′)
G(x,x′),

∂2

∂n(x)∂n(x′)
GDN (x,x′) N→∞−→ ∂2

∂n(x)∂n(x′)
G(x,x′).

All the left hand sides converge absolutely and uniformly with respect to x ∈ Ãi and
x′ ∈ Ãj, when N →∞.

Proof. From Theorems 2 and 4, GDN (x,x′) converges absolutely to G(x,x′). The
uniform convergence comes from the construction of Wi :

max
x∈Ãi

|x−zi|
|zi−zj| <

1

1 + 2e
, max

x′∈Ãj

|x′−zj|
|zi−zj| <

1

1 + 2e
.

The expression of ∂
∂n(x)G

D
N (x,x′), ∂

∂n(x′)G
D
N (x,x′) and ∂2

∂n(x)∂n(x′)G
D
N (x,x′) is quite

similar to that of GDN (x,x′). Consequently, the proof of Lemma 1, Theorem 2 and
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Theorem 4 can be carried over almost unchanged to the case of normal derivatives.
The last three convergence results of this theorem follow.

Assume that Ãj ⊂Wi. From the above theorem, we automatically have∣∣∣∣∫
Γ×Γ

[
G(x,x′)−GDN (x,x′)

]
ζ(x)f(i,l)(x)ζ(x′)f(j,l′)(x′) dγ(x) dγ(x′)

∣∣∣∣
≤

[
max

x∈Ãi,x′∈Ãj

∣∣G(x,x′)−GDN (x,x′)
∣∣]

·
∫
Ãi×Ãj

ζ(x)f(i,l)(x)ζ(x′)f(j,l′)(x′) dγ(x) dγ(x′) .

since the support of f(i,l) belongs to Ãi and that of f(j,l′) belongs to Ãj . Thanks
to the uniform convergence in Theorem 6, we have

max
x∈Ãi,x′∈Ãj

∣∣G(x,x′)−GDN (x,x′)
∣∣ N→∞−→ 0 .

Thus ∫
Γ×Γ

GDN (x,x′)ζ(x)f(i,l)(x)ζ(x′)f(j,l′)(x′) dγ(x) dγ(x′)

N→∞−→
∫

Γ

V
(
ζf(i,l)

)
(x′)ζ(x′)f(j,l′)(x′) dγ(x′) .

We have the same convergence for the derivatives ∂
∂n(x) ,

∂
∂n(x′) and ∂2

∂n(x)∂n(x′) . In

this latter case the integral for N = ∞ must be taken in the finite part sense ([7]).
From these convergence results, we can infer that

Z
(N)
(l,i),(l′.j)

N→∞−→ Z(l,i),(l′,j) .

Now if Ãj ⊂ Ŵi, then Z
(N)
(l,i),(l′.j) = Z(l,i),(l′,j) from formula (32). Therefore we have

proved the next theorem.

Theorem 7. We have Z(N) N→∞−→ Z in any norm.

We conclude this section by giving the explicit form of Z
(N)
(l,i),(l′.j) when j is such

that Ãj ⊂Wi. By setting

V±(i,l)(θ) =

∫
Γ

exp(±ık (zi−x)·U(θ)) f(i,l)(x) ζ(x) dγ(x) ,

W±
(i,l)(θ) =

∫
Γ

±ıkn(x)·U(θ) exp(±ık (zi−x)·U(θ)) f(i,l)(x) dγ(x) ,

we obtain with θnT = 2πnT
NT

,

Z
(N)
(l,i),(l′,j) = − 1

2πNT

NT∑
nT=1

{
W+

(j,l′)(θnT )W−
(i,l)(θnT )

+i
(
W+

(j,l′)(θnT )V−(i,l)(θnT ) + V+
(j,l′)(θnT )W−

(i,l)(θnT )
)

−V+
(j,l′)(θnT )V−(i,l)(θnT )

}
τ

(N)
ij (θnT ) .(33)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CONVERGENCE THEOREM FOR THE FMM IN 2D 579

7. Matrix-vector multiplication

The multiplication of Z by a vector Y =
(
Y(l,i)

)
1≤i≤p,1≤l≤q is done as follows:

(Z·Y)(l,i)≈
(
Z̃(N) ·Y

)
(l,i)

=
∑

Ãj∈Ŵi

q∑
l′=1

Z(l,i),(l′,j)Y(l′,j)

︸ ︷︷ ︸
“nearby”aggregates

+
∑

Ãj∈Wi

q∑
l′=1

Z̃
(N)
(l,i),(l′,j)Y(l′,j)

︸ ︷︷ ︸
“remote”aggregates

.

The first part of the right hand side of above equation can be viewed as the multi-
plication of a sparse matrix S by Y. The matrix S is sparse since the number of
nearby aggregates is equal to about 7, provided the shape of Ωi is convex. If Ωi

is not convex, there might be a few more nearby aggregates. The components of
S are computed in the standard way since Rokhlin’s formula (6) does not hold for
nearby aggregates. To examine the second part of the formula, let us first set

SjV(θnT ) =

q∑
l′=1

V+
(j,l′)(θnT )Y(l′,j),

SjW(θnT ) =

q∑
l′=1

W+
(j,l′)(θnT )Y(l′,j),

T i
V(θnT ) =

∑
Ãj∈Wi

τ
(N)
ij (θnT )SjV(θnT ) ,

T i
W(θnT ) =

∑
Ãj∈Wi

τ
(N)
ij (θnT )SjW(θnT ) .

Then a straightforward calculation shows that

(Z·Y)(l,i) ≈ (S·Y)(l,i) − 1

2πNT

NT∑
nT=1

{
W−

(i,l)(θnT )T i
W(θnT )

+i
(
V−(i,l)(θnT ) T i

W(θnT ) +W−
(i,l)(θnT )T i

V(θnT )
)

−V−(i,l)(θnT )T i
V(θnT )

}
.(34)

The main difficulty we face in studying Rokhlin’s method lies in the fact that,
even if from a theoretical point of view (see Theorems 2, 4, 6 and 7) the greater N
the more accurate the approximation, N must (in numerical simulations) belong to
a fixed range of integers. If N is too small, the overall accuracy is not good, which
is quite logical. But if N is too large, then (6) is not numerically accurate. We
refer here to Remark 5. Hopefully, there is a range of integer values N such that
the accuracy of Rokhlin’s formula (6) is quite good (double precision is reached).

Theorems 2 and 4 are not used numerically to compute the best N since these

theorems assume that N > C|k|2 maxi,j |zi−zj|2. Numerically the integer N such
that (6) provides the best accuracy is always bracketed between the two following
values:

|k|max
i

min
x′∈Ãj⊂Wi

|x′−zi| , |k|max
i,j

|zi−zj| .

To end this section, let us explain briefly why (34) leads to an O
(
n3/2

)
matrix-

vector multiplication, as stated in the Introduction. To do so, we shall give the link
between all the quantities that have been introduced before. If L is the length of the
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obstacle Ωi, then the number n of mesh intervals used to discretize Γ satisfies n =
O(|k|L). Here we have assumed that the number of mesh interval per wavelength is
fixed (usually between 6 and 10). We recall that p is the number of aggregates and
q is the number of mesh intervals in each aggregate, with n = pq. If one chooses
p, q so that p ≈ q, then p ≈ q = O(

√
n). If n is large (say 1, 000), the optimal

number N is approximately N ≈ |k|maxi minx′∈Ãj⊂Wi
|x′−zi| = O(q) = O(

√
n).

And finally NT = 2N + 1 = O(
√
n). The calculation can be split into parts

• The first calculation does not depend on the vector Y, and thus need be
performed only once. This consists in computing V±(i,l)(θnT ) and W±

(i,l)(θnT )

(for 1 ≤ i ≤ p, 1 ≤ l ≤ q and 1 ≤ nT ≤ NT ), which requires pqNT = O
(
n3/2

)
operations. Next τ

(N)
ij (θnT ) (for 1 ≤ i, j ≤ p and 1 ≤ nT ≤ NT ) leads to

p2NTN = O
(
n2
)

operations. In fact, this number can be reduced by using

the Fast Fourier Transform, leading to O
(
n3/2 logn

)
operations.

• The second calculation is the matrix-vector multiplication step itself. First,
one has to compute SjV(θnT ), SjW(θnT ) (for 1 ≤ j ≤ p and 1 ≤ nT ≤ NT )
and T i

V(θnT ), T i
W(θnT ) (for 1 ≤ i ≤ p and 1 ≤ nT ≤ NT ), which both

require O
(
n3/2

)
operations. Thanks to the remark at the end of Section 4,

the average number of nonzero elements in each row of the matrix S is about
7q = O(

√
n). Thus S has only O

(
n3/2

)
nonzero elements, which proves that

S is sparse. We conclude that the matrix-vector multiplication S·Y requires
O
(
n3/2

)
operations. The remaining term of formula (34) clearly leads to

O
(
n3/2

)
operations.

Let us conclude this section by giving the cost of the FMM in terms of the
size of the obstacle as measured in wavelengths. We noticed earlier that n =
O(|k|L). Hence n = O

(
L
λ

)
, where λ is the wavelength, so that the matrix-vector

multiplication requires O
((

L
λ

)3/2)
operations.

8. Conclusion

In this paper, we have shown the convergence of the FMM in two dimensions
(Theorems 2, 4 and 6). We assert that the same kind of theorem can be proved
in R3. In order to explain how to implement the FMM, we considered a specific
problem. We took it as general as possible (namely the impedance boundary condi-
tion) with the moment method for the discretization. The FMM can obviously be
applied to other boundary conditions and to other numerical methods (collocation
method, ...). Here the convergence of the FMM with moment method has been
proved (Theorem 7).

The domain of validity of the approximation (6) for x ∈ Ai and x′ ∈ Aj , as
stated in Theorems 2 and 4, is roughly |i− j| ≥ 4. This condition does not appear
to be optimal since in numerical simulations we have noticed the convergence of
(6) as soon as |i− j| ≥ 2 (for smooth obstacles).

As far as numerical issues are concerned, some preliminary computations can be
done first. They consist in constructing the sparse matrix S and then computing

some numbers (V±(i,l)(θnT ), W±
(i,l)(θnT ) and τ

(N)
ij (θnT )). The CPU cost is much lower

than the construction of the dense matrix Z, as done for the classical inversion of
Z. Next the number of operations required for each matrix-vector multiplication is

O
(
n3/2

)
or O

((
L
λ

)3/2)
, which is much lower than O

(
n2
)

or O
((

L
λ

)2)
.
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In this paper, we also showed that the choice of N is crucial in the FMM. First,
the accuracy of (4) depends on N . Secondly, the CPU cost is linearly related to
N . Thus before starting the FMM in a Helmholtz solver, one should compute the
best value for N .

9. Appendix A: Useful formulae on Hankel functions

We only recall here the formulae for Bessel and Hankel functions that are nec-
essary to understand the FMM.

• To begin, let us give two important relations [1, formulae 9.1.5 and 9.1.6]

H
(1)
−m(z) = (−1)mH(1)

m (z) , J−m(z) = (−1)mJm(z) .(35)

• For the convergence analysis we need some uniform bounds on the Bessel and
Hankel functions.

Proposition 8. Let R and R′ be two positive constants with R > R′. Then
there exists a constant C depending only on R and R′ such that

mJ√
2π|n|

(
e|z|
2|n|

)|n|
≤|Jn(z)| ≤ MJ√

2π|n|

(
e|z|
2|n|

)|n|
(36)

for all |z| ≤ R, |n| > C|z|2, and

mH

√
2

π|n|
(

2|n|
e|z|

)|n|
≤
∣∣∣H(1)

n (z)
∣∣∣ ≤MH

√
2

π|n|
(

2|n|
e|z|

)|n|
(37)

for all R′ ≤|z| ≤ R and |n| > C|z|2.
The choices of R and R′ are given in the beginning of Section 4.

Proof. Thanks to (35), we only have to consider the case when n is positive.
– From [1, formula 9.1.10], the Bessel function has the following expansion

Jn(z) =
1

n!

(z
2

)n ∞∑
m=0

(−1)mn!

m!(n+m)!

(z
2

)2m

.

Hence ∣∣∣∣∣ Jn(z)
1
n!

(
z
2

)n − 1

∣∣∣∣∣ ≤
∞∑

m=1

n!

m!(n+m)!

( |z|
2

)2m

.

The Stirling formula enables us to write

n!
n→∞∼ √

2πn
(n

e

)n
.

Thus, there exist two constants Cmin and Cmax such that for all n ∈ N∗

Cmin

√
2πn

(n
e

)n
≤ n! ≤ Cmax

√
2πn

(n
e

)n
.(38)

Since m ≥ 0, we conclude that

n!

(n+m)!
≤ Cmax

Cmin

√
n

n+m

nnem

(n+m)n+m
≤ Cmax

Cmin

nnem

(n+m)n+m
.

From Proposition 11 part (ii), we obtain

n!

(n+m)!
≤ Cmax

Cmin

1

nm
,
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and
∞∑

m=1

n!

m!(n+m)!

( |z|
2

)2m

≤ Cmax

Cmin

∞∑
m=1

1

m!

( |z|2
4n

)m
.

If n ≥ |z|2
2 , then |z|2

4n ≤ 1
2 , which implies that∣∣∣∣∣ Jn(z)

1
n!

(
z
2

)n − 1

∣∣∣∣∣ ≤ Cmax

Cmin

|z|2
4n

∞∑
m=0

1

2m
≤ Cmax

Cmin

|z|2
2n

.

Let C = max
(

1
2 ,

Cmax

Cmin

)
so that for n > C|z|2 we have Cmax

Cmin

|z|2
2n < 1

2 .

Hence, using (38), we have shown (36) withmJ = 1
2Cmax

andMJ = 3
2Cmin

.

– From [1, formula 9.1.11], on can write

H(1)
n (z) =

(
1 +

2ı

π

(
γ + log(

z

2
)
))

Jn(z) +
ı

π
T (1)
n (z) +

ı

π
T (2)
n (z) ,

where γ is the Euler constant (γ = 0.5772157 . . . ), and

T (1)
n (z) = −(n− 1)!

(
2

z

)n n−1∑
m=0

(n−m− 1)!

m!(n− 1)!

(z
2

)2m

,

T (2)
n (z) = −

+∞∑
m=0

(−1)m
(
z
2

)n+2m

m!(m+ n)!
(ψ(m) + ψ(m+ n)) ,

with ψ(m) := 1
1 + 1

2 + . . .+ 1
m (for m ∈ N∗), and ψ(0) = 0. Thus∣∣∣∣∣ H

(1)
n (z)

− ı
π (n− 1)!

(
2
z

)n − 1

∣∣∣∣∣ ≤
∣∣∣∣1 +

2ı

π

(
γ + log(

z

2
)
)∣∣∣∣
∣∣∣∣∣ πJn(z)

(n− 1)!
(

2
z

)n
∣∣∣∣∣

+

∣∣∣∣∣ T
(1)
n (z)

−(n− 1)!
(

2
z

)n − 1

∣∣∣∣∣+
∣∣∣∣∣ T

(2)
n (z)

(n− 1)!
(

2
z

)n
∣∣∣∣∣ .

Let us assume that n > C|z|2. Then, (36) provides an upper bound of
the Bessel function

|Jn(z)| ≤ MJ√
2πn

(
e|z|
2n

)n
.

Henceforth, from (38)∣∣∣∣∣ πJn(z)

(n− 1)!
(

2
z

)n
∣∣∣∣∣ ≤ πMJ√

2πn

n

n!

( |z|
2

)2n( e

n

)n
≤ MJ

2Cmin

(
e|z|
2n

)2n

.(39)

Next, we have∣∣∣∣∣ T
(1)
n (z)

−(n− 1)!
(

2
z

)n − 1

∣∣∣∣∣ ≤
n−1∑
m=1

(n−m− 1)!

m!(n− 1)!

( |z|
2

)2m

.

In order to bound this term, we first notice that

(n− 1− n)!

(n− 1)!
≤ Cmax

Cmin

(n− 1−m)n−1−mem

(n− 1)n−1
.
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Doing as in the proof of Proposition 11, one can show that

(n− 1−m)n−1−m

(n− 1)n−1
≤ 1

(n− 1)m
.

Consequently∣∣∣∣∣ T
(1)
n (z)

−(n− 1)!
(

2
z

)n − 1

∣∣∣∣∣ ≤ Cmax

Cmin

∞∑
m=1

1

m!

(
e2|z|2

4(n− 1)

)m
.

Since R′ ≤ |z| ≤ R, there exists a constant again denoted by C such that

for n > C|z|2, we have e2|z|2
4(n−1) <

1
2 . Thus∣∣∣∣∣ T

(1)
n (z)

−(n− 1)!
(

2
z

)n − 1

∣∣∣∣∣ ≤ Cmax

Cmin

e2|z|2
4(n− 1)

∞∑
m=0

1

2m
≤ Cmax

Cmin

e2|z|2
2(n− 1)

.(40)

Since ψ(p) ≤ p for p ∈ N, one may write∣∣∣∣∣ T
(2)
n (z)

(n− 1)!
(

2
z

)n
∣∣∣∣∣ ≤ 1

(n− 1)!

( |z|
2

)2n +∞∑
m=0

(2m+ n)

m!(m+ n)!

( |z|
2

)2m

.

Clearly we have 2m+ n ≤ 2(m+ n), and∣∣∣∣∣ T
(2)
n (z)

(n− 1)!
(

2
z

)n
∣∣∣∣∣ ≤ 2

(n− 1)!

( |z|
2

)2n +∞∑
m=0

1

m!(m+ n− 1)!

( |z|
2

)2m

≤ 2

((n− 1)!)
2

( |z|
2

)2n +∞∑
m=0

1

m!

( |z|
2

)2m

=
2

((n− 1)!)2

( |z|
2

)2n

e
|z|2
4 .

From (38), we have (n− 1)! = n!
n ≥ Cmin

√
2π
n

(
n
e

)n
. Thus∣∣∣∣∣ T

(2)
n (z)

(n− 1)!
(

2
z

)n
∣∣∣∣∣ ≤ 2n

πCmin

(
e|z|
2n

)2n

e
|z|2
4 .(41)

Combining (39), (40) and (41), we see that there exists a constant again
denoted by C such that for all n > C|z|2 we have∣∣∣∣∣ H

(1)
n (z)

− ı
π (n− 1)!

(
2
z

)n − 1

∣∣∣∣∣ ≤ 1

2
.

Consequently, (37) holds with mH = 1
2Cmax

and MH = 3
2Cmin

.

• Let us now consider the Bessel function when |z| ≤ R and |n| ≤ C|z|2. Jn(z) is
well defined everywhere in this set. In addition, the mapping (n, z) 7→ Jn(z) is

continuous. Hence, since the set of all (n, z) such that |z| ≤ R and |n| ≤ C|z|2
is compact, we conclude that there exists Cβ̃ depending only on R and C such

that

|Jn(z)| ≤ Cβ̃ ∀|z| ≤ R , ∀|n| ≤ C|z|2 .(42)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



584 CHRISTOPHE LABREUCHE

v̂

ŵ

û

α

β

Figure 4. Link between û, v̂, ŵ and α, β.

In the same way, one can show that there exists a constant Cα̃ such that∣∣∣H(1)
n (z)

∣∣∣ ≤ Cα̃ ∀R′≤|z|≤R , ∀|n|≤C|z|2 .(43)

• The Bessel function Jm can be put into an integral form. From formula
(9.1.21) in [1], one can easily show that

Jm(z) =
1

2π

∫ 2π

0

exp(ız cos θ) exp(ımθ) exp(−ımπ/2) dθ .(44)

• The two formulae (9.1.42) and (9.1.43) in ([1]) yield

exp(ız sin θ) =
∑
m∈Z

Jm(z) exp(ımθ) .(45)

• The Graf formula is at the root of all the multipole methods. It reads for
u, v, w ∈ C [1, formula 9.1.79]

H(1)
p1

(w) exp(ıp1β) =

∞∑
q1=−∞

H
(1)
p1+q1(u)Jq1(v) exp(ıq1α) if |v| < |u| .(46)

If u = kû, v = kv̂, w = kŵ where û, v̂, ŵ are positive numbers and k ∈ C,
then α and β are positive numbers. Moreover, they represent some angles, as
depicted in Figure 4. By (36) and (37), the condition |v| < |u| in (46) implies
the convergence of the expansion in the right hand side of (46).

10. Appendix B: Some multipole formulae

Let Dzi , Dx′ , Dzj be three balls with centers respectively zi, x′ and zj (see
Figure 1) chosen so that Dx′ ⊂ Dzj and Dzi ∩Dzj = ∅.
Proposition 9. (i) Let Φ be a function defined outside Dx′ . We assume that

Φ can be expanded as

Φ(x) =
∑
m∈Z

βmH
(1)
m (k |x−x′|) exp(ım arg(x−x′)) .

Moreover assume that the expansion∑
l∈Z

exp(−ıl arg(x′−zj))βm−lJl(k |x′−zj|) := β̃m

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CONVERGENCE THEOREM FOR THE FMM IN 2D 585

converges for all m ∈ Z, and that
∑

m∈Z

∣∣∣β̃mH(1)
m (k |x−zj|)

∣∣∣ converges for all

x outside Dzj . Then outside Dzj , Φ can be written as

Φ(x) =
∑
m∈Z

β̃mH
(1)
m (k |x−zj|) exp(ımarg(x−zj)) .

(ii) Let Φ be a function defined outside Dzj . We assume that Φ can be expanded
as

Φ(x) =
∑
m∈Z

αmH
(1)
m (k |x−zj|) exp(ımarg(x−zj)) .

Moreover assume that the expansion∑
l∈Z

exp(−ıl( arg(zi−zj)− π))αm−lH
(1)
l (k |zi−zj|) := α̃m

converges for all m ∈ Z, and that
∑

m∈Z

∣∣∣β̃mJm(k |x−zi|)
∣∣∣ converges for all

x ∈ Dzi . Then inside Dzi , Φ can be written as

Φ(x) =
∑
m∈Z

α̃mJm(k |x−zi|) exp(ımarg(x−zi)) .

Proof. The two items are proved in a similar way based on the Graf formula (46).
We only give details of the proof of the second item. Thanks to the assumptions
on the sequences αm and α̃m, the following function

Ψ(x) :=
∑
m∈Z

α̃mJm(k |x−zi|) exp(ımarg(x−zi))

=
∑
m,l∈Z

exp(−ıl( arg(zi−zj)− π))αm−l

·H(1)
l (k |zi−zj|) Jm(k |x−zi|) exp(ımarg(x−zi))

is well defined for x ∈ Dzi . With the change of indexes p1 = m− l and q1 = l, we
have

Ψ(x) =
∑
p1∈Z

αp1

∑
q1∈Z

H(1)
q1 (k |zi−zj|)Jp1+q1(k |x−zi|)

· exp(−ıq1 ( arg(zi−zj)− π)) exp(ı (p1 + q1) arg(x−zi))

 .

On the other hand, let us use formula (46) with u = k |zi−zj|, v = k |x−zi| and
w = k |x−zj|. The condition |v| < |u| holds since x lies inside Dzi whereas zj
lies outside Dzi (because Dzi ∩ Dzj = ∅). By Figure 5, the two angles α and β
arising in formula (46) and Figure 4 satisfy α = arg(zi−zj) + π − arg(x−zi) and
β = arg(x−zj)− arg(zi−zj).

Hence by Graf’s formula (46)

H(1)
p1

(k |x−zj|) exp(ıp1(arg(x−zj)− arg(zi−zj)))

=
∑
q1∈Z

H
(1)
p1+q1(k |zi−zj|)Jq1(k |x−zi|) exp(ıq1( arg(zi−zj) + π − arg(x−zi))) .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



586 CHRISTOPHE LABREUCHE

zj

zi

arg(x-z )j
arg(z -z )i j

arg(z -z )+ji π

arg(x-z )i

|x-z |j

|z -z |i j

|x-z |i

x

Figure 5. Link between û, v̂, ŵ and α, β.

With the new index q2 = −p1 − q1, and thanks to (35), we arrange the above
formula as

H(1)
p1

(k |x−zj|) exp(ıp1(arg(x−zj)− arg(zi−zj)))

=
∑
q2∈Z

H
(1)
−q2(k |zi−zj|)J−p1−q2(k |x−zi|)

· exp(−ı(p1 + q2)( arg(zi−zj)− π − arg(x−zi)))

=
∑
q2∈Z

H(1)
q2 (k |zi−zj|)Jp1+q2(k |x−zi|) exp(ıq2(π − arg(zi−zj) + arg(x−zi)))

· exp(ıp1(arg(x−zi)− arg(zi−zj))) .

Then

H(1)
p1

(k |x−zj|) exp(ıp1arg(x−zj)) =
∑
q2∈Z

H(1)
q2 (k |zi−zj|)Jp1+q2(k |x−zi|)

· exp(−ıq2( arg(zi−zj)− π)) exp(ı(p1 + q2)arg(x−zi)) .

By putting this into the expression for Ψ, we obtain

Ψ(x) =
∑
m∈Z

αmH
(1)
m (k |x−zj|) exp(ımarg(x−zj)) ≡ Φ(x) .

Proposition 10. Let Φ be a function defined in Dzi and having the following ex-
pansion

Φ(x) =
∑
m∈Z

αmJm(k |x−zi|) exp(ımarg(x−zi))
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and moreover assume that the expansion
∑

m∈Z αm exp(ımθ) exp(−ımπ/2) con-
verges absolutely for all θ ∈ [0, 2π]. Then for x ∈ Dzi

Φ(x) =
1

2π

∫ 2π

0

exp(ık |x−zi| cos(θ − arg(x−zi)))

·
(∑
m∈Z

αm exp(ımθ) exp(−ımπ/2)
)
dθ .

Proof. The integral formula (44) enables us to write

Φ(x) =
∑
m∈Z

αm exp(ımarg(x−zi))

2π

·
∫ 2π

0

exp(ık |x−zi| cosϑ) exp(ımϑ) exp(−ımπ/2) dϑ .

Under the assumption that the expansion
∑

m∈Z αm exp(ımϑ) exp(−ımπ/2) con-
verges absolutely, we can perform the interchange of summation and integration to
arrive at

Φ(x) =
1

2π

∫ 2π

0

exp(ık |x−zi| cosϑ)

·
(∑
m∈Z

αm exp(ımarg(x−zi)) exp(ımϑ) exp(−ımπ/2)
)
dϑ .

To conclude the proof, it only remains to do the change of variable θ = ϑ+arg(x−zi).

11. Appendix C: Some analytic results.

We give here some results that are very useful in Sections 4 and 5.

Proposition 11. (i) For any m ≥ 0 and any l > m

ll

(l −m)l−m
≤ lmem .

(ii) For any m ≥ 0 and any l > 0

ll

(l +m)l+m
≤ l−me−m .

(iii) For any m ≥ 0 and any l ≥ 1

(l +m)l+m

ll
≤ lm(m+ 1)m+1 .

Proof. (i) One may write

log

(
ll

(l −m)l−m

)
= m log l − (l −m) log

(
1− m

l

)
.

Let us define h(l) = −(l−m) log
(
1− m

l

)
. For l > m ≥ 0, h is a positive and

increasing function of l, since

h′(l) = − log
(
1− m

l

)
− l −m

1− m
l

m

l2
= − log

(
1− m

l

)
− m

l
≥ 0 .
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Here we have used the fact that − log(1 − u) ≥ u for 0 ≤ u < 1. Hence
0 ≤ h(l) ≤ liml→∞ h(l) = m. Consequently (i) isproved.

(ii) If we now define h(l) = (l +m) log
(
1 + m

l

)
, then we have

log

(
ll

(l +m)l+m

)
= −m log l − h(l) .

For m ≥ 0 and l > 0, h is a positive function and

h′(l) = log
(
1 +

m

l

)
− l +m

1 + m
l

m

l2
= log

(
1 +

m

l

)
− m

l
≤ 0 .

Hence h(l) ≥ liml→∞ h(l) = m, so that (ii) is proved.
(iii) With the previous definition of h(l), h can be bounded by

log

(
(l +m)l+m

ll

)
= m log l+ h(l) .

Since the function h(l) is decreasing and l ≥ 1, we get

h(l) ≤ h(1) = (1 +m) log(1 +m) .

This concludes the proof.

Proposition 12. Let a and A be two positive numbers. Then

(i) If x ≥ y ≥ a, then
(
a
x

)x ≤(ay)y.
(ii) If y ≥ x ≥ a, then

(
x
a

)x ≤(ya)y.
(iii) If A < a

e , then max0≤x≤A
(
a
x

)x
=
(
a
A

)A
.

(iv) If A ≥ a
e , then max0≤x≤A

(
a
x

)x
= exp

(
a
e

) ≤ exp(A).

Proof. As far as the first point (i) is concerned, since a
x ≤ a

y ≤ 1, we have directly(a
x

)x
=
(a
x

)y(a
x

)x−y
≤
(a
x

)y
≤
(
a

y

)y
.

The second point can be derived in the same way.
Let f(x) =

(
a
x

)x
. Its derivative is f ′(x) =

(
a
x

)x
log
(
a
ex

)
. Hence, f is an increasing

function for 0 ≤ x ≤ a
e , and is a decreasing function for x ≥ a

e . The two points
(iii), (iv) follow directly from this. We also notice that the maximum of f is
f
(
a
e

)
= exp

(
a
e

)
.

Proposition 13. Let x be a real number satisfying 0 ≤ x < 1√
e
. Then for all

integers L and M , with L ≥M , we have

∞∑
l=L

lMxl ≤ Cg
(2L)MxL

(1− x)M+1
,

where Cg := 1
1−√ex

.

Proof. Let us introduce, for L ≥ M , the two functions f(x) =
∑∞

l=L l
Mxl and

g(x) =
∑∞

l=L x
l which are linked by the relation(

x
d

dx

)M
g(x) = f(x) .
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Moreover, g(x) = xL

1−x . From this relation for g, one can easily see that there exists

M + 1 coefficients PM
0 , . . . , PM

M such that(
x
d

dx

)M
g(x) =

PM
0 xL + PM

1 xL+1 + · · ·+ PM
M xL+M

(1− x)M+1
.

A straightforward calculation shows the recursive relations
PM+1

0 = LPM
0 ,

PM+1
m = (L+m) PM

m +(M + 2− L−m) PM
m−1 , 1 ≤ m ≤M,

PM+1
M+1 = (1− L) PM

M ,

with P 0
0 = 1. We claim that∣∣PM

m

∣∣ ≤(2L+m)
M

, 0 ≤ m ≤M .(47)

The proof of this inequality is recursive. First we notice that (47) is obvious when
M = 0. Then we assume that (47) is satisfied at the level M . For 1 ≤ m ≤M , we
have ∣∣PM+1

m

∣∣ ≤ (L+m) (2L+m)
M

+(L+m−M − 2) (2L+m− 1)
M

≤ (L+m) (2L+m)
M

+ L (2L+m)
M

=(2L+m)
M+1

.

When m = M +1,
∣∣PM+1

M+1

∣∣ ≤(L− 1) (2L+M)
M ≤(2L+M + 1)

M+1
. And finally,

when m = 0, we have
∣∣PM+1

0

∣∣ ≤ L (2L)
M ≤ (2L)

M+1
. Hence (47) holds for all

M ∈ N. Now the function f can be bounded by

f(x) ≤
∑M

m=0

∣∣PM
m

∣∣xL+m

(1− x)
M+1

≤
∑M

m=0(2L+m)
M
xL+m

(1− x)
M+1

.

From the relation (which holds since L ≥M)

log

[
(2L+m)

M

(2L)
M

]
= M log

(
1 +

m

2L

)
≤M

m

2L
≤ m

2
,

and since the exponential is an increasing function, we obtain

(2L+m)M ≤(2L)M exp
(m

2

)
.

Hence

f(x) ≤(2L)
M
xL
∑M

m=0(
√

ex)
m

(1− x)M+1
.

Since x < 1√
e
,
∑M

m=0(
√

ex)
m ≤ Cg := 1

1−√ex
. Hence the proposition is proved.

Proposition 14. The sequence Sm := 1
NT

∑NT

nT=1 exp
(
ım 2πnT

NT

)
satisfies for m ∈

Z

S0 = 1 , Sm = 0 for 1 ≤ |m| ≤ NT − 1 .
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Proof. The first equality is obvious. The complex numbers xnT := exp
(

2ıπnT
NT

)
are

the zeros of the polynomial

P (x) = xNT − 1 =

NT∑
m=0

pmx
NT−m ,

where p0 = 1, pNT = −1, and pm = 0 for m ∈ {1, · · · , NT − 1}. The moments of
xnT , defined by

σm :=

NT∑
nT=1

(xnT )
m

= NTSm,

are linked to the coefficients pm by the Newton formula

−mpm =

m−1∑
l=0

plσm−l = σm .

We conclude that σm = 0 and hence Sm = 0 for 1 ≤ m ≤ NT − 1. The previous

analysis can still be done with the sequence ynT = exp
(
− 2ıπnT

NT

)
instead of xnT .

We remark that a positive integer m with ynT corresponds to −m with xnT . Thus,
the previous analysis is still valid for negative values of m.
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