Classification of integral lattices with large class number
HTML articles powered by AMS MathViewer
- by Rudolf Scharlau and Boris Hemkemeier PDF
- Math. Comp. 67 (1998), 737-749 Request permission
Abstract:
A detailed exposition of Kneser’s neighbour method for quadratic lattices over totally real number fields, and of the sub-procedures needed for its implementation, is given. Using an actual computer program which automatically generates representatives for all isomorphism classes in one genus of rational lattices, various results about genera of $\ell$-elementary lattices, for small prime level $\ell ,$ are obtained. For instance, the class number of $12$-dimensional $7$-elementary even lattices of determinant $7^6$ is $395$; no extremal lattice in the sense of Quebbemann exists. The implementation incorporates as essential parts previous programs of W. Plesken and B. Souvignier.References
- Christine Bachoc, Voisinage au sens de Kneser pour les réseaux quaternioniens, Comment. Math. Helv. 70 (1995), no. 3, 350–374 (French). MR 1340098, DOI 10.1007/BF02566012
- J. W. Benham and J. S. Hsia, Spinor equivalence of quadratic forms, J. Number Theory 17 (1983), no. 3, 337–342. MR 724532, DOI 10.1016/0022-314X(83)90051-3
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1993. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1194619, DOI 10.1007/978-1-4757-2249-9
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. IV. The mass formula, Proc. Roy. Soc. London Ser. A 419 (1988), no. 1857, 259–286. MR 965484
- B. Habdank-Eichelsbacher: Unimodulare Gitter über reell-quadratischen Zahlkörpern. Dissertation, Bielefeld 1994.
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- O. T. O’Meara, Introduction to quadratic forms, Die Grundlehren der mathematischen Wissenschaften, Band 117, Springer-Verlag, New York-Heidelberg, 1971. Second printing, corrected. MR 0347768
- G. Nebe, B.B. Venkov: Non-existence of extremal lattices in certain genera of modular lattices. J. Number Theory 60 (1996), 310–317.
- Hans-Volker Niemeier, Definite quadratische Formen der Dimension $24$ und Diskriminante $1$, J. Number Theory 5 (1973), 142–178 (German, with English summary). MR 316384, DOI 10.1016/0022-314X(73)90068-1
- Horst Pfeuffer, Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern, J. Number Theory 3 (1971), 371–411 (German, with English summary). MR 306155, DOI 10.1016/0022-314X(71)90011-4
- W. Plesken and M. Pohst, Constructing integral lattices with prescribed minimum. I, Math. Comp. 45 (1985), no. 171, 209–221, S5–S16. MR 790654, DOI 10.1090/S0025-5718-1985-0790654-2
- W. Plesken, B. Souvignier: Computing isometries of lattices. Preprint 1993. To appear in J. Symb. Comp.
- H.-G. Quebbemann, Modular lattices in Euclidean spaces, J. Number Theory 54 (1995), no. 2, 190–202. MR 1354045, DOI 10.1006/jnth.1995.1111
- Rudolf Scharlau and Boris B. Venkov, The genus of the Barnes-Wall lattice, Comment. Math. Helv. 69 (1994), no. 2, 322–333. MR 1282375, DOI 10.1007/BF02564490
- R. Schulze-Pillot: An algorithm for computing genera of ternary and quaternary quadratic forms. Proc. of the Int. Symp. on Symbolic and Algebraic Computation, Bonn 1991.
- Robert Endre Tarjan, Data structures and network algorithms, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 44, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. MR 826534, DOI 10.1137/1.9781611970265
- B. B. Venkov, On the classification of integral even unimodular $24$-dimensional quadratic forms, Trudy Mat. Inst. Steklov. 148 (1978), 65–76, 273 (Russian). Algebra, number theory and their applications. MR 558941
Additional Information
- Rudolf Scharlau
- Affiliation: Fachbereich Mathematik, Universität Dortmund, 44221 Dortmund, Germany
- Email: Rudolf.Scharlau@mathematik.uni-dortmund.de
- Boris Hemkemeier
- Affiliation: Fachbereich Mathematik, Universität Dortmund, 44221 Dortmund, Germany
- Email: Boris.Hemkemeier@mathematik.uni-dortmund.de
- Received by editor(s): January 11, 1995
- Received by editor(s) in revised form: October 7, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Math. Comp. 67 (1998), 737-749
- MSC (1991): Primary 11E41; Secondary 11H55, 11--04
- DOI: https://doi.org/10.1090/S0025-5718-98-00938-7
- MathSciNet review: 1458224