Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Numerical conformal mapping based on the generalised conjugation operator
HTML articles powered by AMS MathViewer

by Bao Cheng Li and Stavros Syngellakis PDF
Math. Comp. 67 (1998), 619-639 Request permission


An iterative procedure for numerical conformal mapping is presented which imposes no restriction on the boundary complexity. The formulation involves two analytically equivalent boundary integral equations established by applying the conjugation operator to the real and the imaginary parts of an analytical function. The conventional approach is to use only one and ignore the other equation. However, the discrete version of the operator using the boundary element method (BEM) leads to two non-equivalent sets of linear equations forming an over-determined system. The generalised conjugation operator is introduced so that both sets of equations can be utilised and their least-square solution determined without any additional computational cost, a strategy largely responsible for the stability and efficiency of the proposed method. Numerical tests on various samples including problems with cracked domains suggest global convergence, although this cannot be proved theoretically. The computational efficiency appears significantly higher than that reported earlier by other investigators.
  • W. H. Chu, Development of a general finite difference approximation for a general domain. Part I: Machine Transformation, J. Comp. Phys. 8 (1971), 392-408.
  • C. Wayne Mastin and Joe F. Thompson, Transformation of three-dimensional regions onto rectangular regions by elliptic systems, Numer. Math. 29 (1977/78), no. 4, 397–407. MR 474860, DOI 10.1007/BF01432877
  • H. J. Haussling and R. M. Coleman, A method for generation of orthogonal and nearly orthogonal boundary-fitted coordinate systems, J. Comput. Phys. 43 (1981), no. 2, 373–381. MR 640363, DOI 10.1016/0021-9991(81)90129-7
  • C. I. Christov, Orthogonal coordinate meshes with manageable Jacobian, Appl. Math. Comp. 10 (1982), 885–894.
  • Joe F. Thompson, Zahir U. A. Warsi, and C. Wayne Mastin, Boundary-fitted coordinate systems for numerical solution of partial differential equations—a review, J. Comput. Phys. 47 (1982), no. 1, 1–108. MR 673712, DOI 10.1016/0021-9991(82)90066-3
  • Panagiotis Demetriou Sparis, A method for generating boundary-orthogonal curvilinear coordinate systems using the biharmonic equation, J. Comput. Phys. 61 (1985), no. 3, 445–462. MR 816664, DOI 10.1016/0021-9991(85)90074-9
  • David C. Ives, A modern look at conformal mapping including multiply connected regions, AIAA J. 14 (1976), no. 8, 1006–1011. MR 484006, DOI 10.2514/3.61324
  • O. Hübner, The Newton method for solving the Theodorsen integral equation, J. Comput. Appl. Math. 14 (1986), no. 1-2, 19–30. Special issue on numerical conformal mapping. MR 829029, DOI 10.1016/0377-0427(86)90129-9
  • Daniel I. Meiron, Steven A. Orszag, and Moshe Israeli, Applications of numerical conformal mapping, J. Comput. Phys. 40 (1981), no. 2, 345–360. MR 617103, DOI 10.1016/0021-9991(81)90215-1
  • Zeev Nehari, Conformal mapping, Dover Publications, Inc., New York, 1975. Reprinting of the 1952 edition. MR 0377031
  • George T. Symm, An integral equation method in conformal mapping, Numer. Math. 9 (1966), 250–258. MR 207240, DOI 10.1007/BF02162088
  • George T. Symm, Numerical mappings of exterior domains, Numer. Math. 10 (1967), 437–445. MR 220465, DOI 10.1007/BF02162876
  • M. A. Jaswon and G. T. Symm, Integral Equation Methods in Potential Theory, Academic Press, London, 1971.
  • D. M. Hough and N. Papamichael, The use of splines and singular functions in an integral equation method for conformal mapping, Numer. Math. 37 (1981), no. 1, 133–147. MR 615896, DOI 10.1007/BF01396191
  • Jean-Paul Berrut, A Fredholm integral equation of the second kind for conformal mapping, J. Comput. Appl. Math. 14 (1986), no. 1-2, 99–110. Special issue on numerical conformal mapping. MR 829032, DOI 10.1016/0377-0427(86)90132-9
  • T. Theodorsen, Theory of Wing Sections of Arbitrary Shape, NACA Report 411, 1931.
  • T. Theodorsen and I. E. Garrick, General Potential Theory of Arbitrary Wing Sections, NACA Report 452, 1933.
  • R. Timman, The direct and the inverse problem of aerofoil theory, a method to obtain numerical solutions, Nat. Luchtiv. Labor., Report F.16, Amsterdam, 1951.
  • M. S. Friberg, A new method for the effective determination of conformal maps, Ph.D. Thesis, Univ. of Minnesota, 1951.
  • Harald Bergström, An approximation of the analytic function mapping a given domain inside or outside the unit circle, Mém. Publ. Soc. Sci. Arts Lett. Hainaut vol. hors série (1958), 193–198. Les mathématiques de l’ingénieur. MR 0117331
  • B. A. Vertgeĭm, Approximate construction of some conformal mappings, Dokl. Akad. Nauk SSSR (N.S.) 119 (1958), 12–14 (Russian). MR 0099414
  • Rudolf Wegmann, Ein Iterationsverfahren zur konformen Abbildung, Numer. Math. 30 (1978), no. 4, 453–466 (German, with English summary). MR 492199, DOI 10.1007/BF01398511
  • Rudolf Wegmann, On Fornberg’s numerical method for conformal mapping, SIAM J. Numer. Anal. 23 (1986), no. 6, 1199–1213. MR 865951, DOI 10.1137/0723081
  • Rudolf Wegmann, An iterative method for the conformal mapping of doubly connected regions, J. Comput. Appl. Math. 14 (1986), no. 1-2, 79–98. Special issue on numerical conformal mapping. MR 829031, DOI 10.1016/0377-0427(86)90131-7
  • Bengt Fornberg, A numerical method for conformal mappings, SIAM J. Sci. Statist. Comput. 1 (1980), no. 3, 386–400. MR 596032, DOI 10.1137/0901027
  • Bengt Fornberg, A numerical method for conformal mapping of doubly connected regions, SIAM J. Sci. Statist. Comput. 5 (1984), no. 4, 771–783. MR 765206, DOI 10.1137/0905055
  • D. Howe, The application of numerical methods to the conformal transformation of polygonal boundaries, J. Inst. Math. Appl. 12 (1973), 125–136. (one plate). MR 343556, DOI 10.1093/imamat/12.2.125
  • V. V. Vecheslavov and V. I. Kokoulin, Determination of the parameters of the conformal mapping of simply connected polygonal regions, U.S.S.R. Comp. Math. and Math. Phys. 13 (1974), 57–65.
  • Lloyd N. Trefethen, Numerical computation of the Schwarz-Christoffel transformation, SIAM J. Sci. Statist. Comput. 1 (1980), no. 1, 82–102. MR 572542, DOI 10.1137/0901004
  • F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1966. Translation edited by I. N. Sneddon. MR 0198152
  • Martin H. Gutknecht, Numerical conformal mapping methods based on function conjugation, J. Comput. Appl. Math. 14 (1986), no. 1-2, 31–77. Special issue on numerical conformal mapping. MR 829030, DOI 10.1016/0377-0427(86)90130-5
  • P. K. Banerjee and R. Butterfield, Boundary element methods in engineering science, McGraw-Hill Book Co. (UK), Ltd., London-New York, 1981. MR 638868
  • Peter Henrici, Applied and computational complex analysis. Vol. 3, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1986. Discrete Fourier analysis—Cauchy integrals—construction of conformal maps—univalent functions; A Wiley-Interscience Publication. MR 822470
  • Rudolf Wegmann, An estimate for crowding in conformal mapping to elongated regions, Complex Variables Theory Appl. 18 (1992), no. 3-4, 193–199. MR 1157927, DOI 10.1080/17476939208814545
  • Thomas K. DeLillo, The accuracy of numerical conformal mapping methods: a survey of examples and results, SIAM J. Numer. Anal. 31 (1994), no. 3, 788–812. MR 1275114, DOI 10.1137/0731043
  • Philip J. Davis, Circulant matrices, A Wiley-Interscience Publication, John Wiley & Sons, New York-Chichester-Brisbane, 1979. MR 543191
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (1991): 30C30, 65N38
  • Retrieve articles in all journals with MSC (1991): 30C30, 65N38
Additional Information
  • Bao Cheng Li
  • Affiliation: Computervision R&D, 138-144 London Road, Wheatley, Oxon OX33 1JH, United Kingdom
  • Email:
  • Stavros Syngellakis
  • Affiliation: Department of Mechanical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
  • Email:
  • Received by editor(s): September 7, 1995
  • Received by editor(s) in revised form: September 19, 1996
  • © Copyright 1998 American Mathematical Society
  • Journal: Math. Comp. 67 (1998), 619-639
  • MSC (1991): Primary 30C30; Secondary 65N38
  • DOI:
  • MathSciNet review: 1464146