Exceptional units in a family of quartic number fields
HTML articles powered by AMS MathViewer
- by G. Niklasch and N. P. Smart PDF
- Math. Comp. 67 (1998), 759-772 Request permission
Abstract:
We determine all exceptional units among the elements of certain groups of units in quartic number fields. These groups arise from a one-parameter family of polynomials with two real roots.References
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- V. Ennola, Cubic number fields with exceptional units, Computational number theory (Debrecen, 1989) de Gruyter, Berlin, 1991, pp. 103–128. MR 1151859
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- Michel Laurent, Maurice Mignotte, and Yuri Nesterenko, Formes linéaires en deux logarithmes et déterminants d’interpolation, J. Number Theory 55 (1995), no. 2, 285–321 (French, with English summary). MR 1366574, DOI 10.1006/jnth.1995.1141
- H. W. Lenstra Jr., Euclidean number fields of large degree, Invent. Math. 38 (1976/77), no. 3, 237–254. MR 429826, DOI 10.1007/BF01403131
- Armin Leutbecher and Gerhard Niklasch, On cliques of exceptional units and Lenstra’s construction of Euclidean fields, Number theory (Ulm, 1987) Lecture Notes in Math., vol. 1380, Springer, New York, 1989, pp. 150–178. MR 1009799, DOI 10.1007/BFb0086551
- Maurice Mignotte, Verification of a conjecture of E. Thomas, J. Number Theory 44 (1993), no. 2, 172–177. MR 1225951, DOI 10.1006/jnth.1993.1043
- Maurice Mignotte, Attila Pethő, and Ralf Roth, Complete solutions of a family of quartic Thue and index form equations, Math. Comp. 65 (1996), no. 213, 341–354. MR 1316596, DOI 10.1090/S0025-5718-96-00662-X
- Trygve Nagell, Sur une propriété des unités d’un corps algébrique, Ark. Mat. 5 (1964), 343–356 (1964) (French). MR 190128, DOI 10.1007/BF02591135
- G. Niklasch: Family portraits of exceptional units. Preprint MPI 95-117, Max-Planck-Inst. f. Math., Bonn, 1995.
- Attila Pethő, Complete solutions to families of quartic Thue equations, Math. Comp. 57 (1991), no. 196, 777–798. MR 1094956, DOI 10.1090/S0025-5718-1991-1094956-7
- N. P. Smart, The solution of triangularly connected decomposable form equations, Math. Comp. 64 (1995), no. 210, 819–840. MR 1277771, DOI 10.1090/S0025-5718-1995-1277771-4
- Nigel Smart, Solving discriminant form equations via unit equations, J. Symbolic Comput. 21 (1996), no. 3, 367–374. MR 1400338, DOI 10.1006/jsco.1996.0018
- Emery Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number Theory 34 (1990), no. 2, 235–250. MR 1042497, DOI 10.1016/0022-314X(90)90154-J
- N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), no. 2, 99–132. MR 987566, DOI 10.1016/0022-314X(89)90014-0
- N. Tzanakis and B. M. M. de Weger, How to explicitly solve a Thue-Mahler equation, Compositio Math. 84 (1992), no. 3, 223–288. MR 1189890
Additional Information
- G. Niklasch
- Affiliation: Zentrum Mathematik der TU / SCM, Technische Universität München, D–80290 München, Germany
- Email: nikl@mathematik.tu-muenchen.de
- N. P. Smart
- Affiliation: Institute of Mathematics and Statistics, University of Kent at Canterbury, Canterbury, Kent, England
- Address at time of publication: Hewlett-Packard Laboratories, Fitton Road, Stoke Gifford, Bristol, BS12 6QZ, United Kingdom
- Email: N.P.Smart@ukc.ac.uk, nsma@hplb.hpl.hp.com
- Received by editor(s): October 18, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Math. Comp. 67 (1998), 759-772
- MSC (1991): Primary 11D61, 11R27, 11J86, 11J25
- DOI: https://doi.org/10.1090/S0025-5718-98-00958-2
- MathSciNet review: 1464147