Class number bounds and Catalan’s equation
Author:
Ray Steiner
Journal:
Math. Comp. 67 (1998), 1317-1322
MSC (1991):
Primary 11D41; Secondary 11R29
DOI:
https://doi.org/10.1090/S0025-5718-98-00966-1
MathSciNet review:
1468945
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We improve a criterion of Inkeri and show that if there is a solution to Catalan’s equation \begin{equation}x^p-y^q=\pm 1,\end{equation} with $p$ and $q$ prime numbers greater than 3 and both congruent to 3 $(\mathrm {mod} 4)$, then $p$ and $q$ form a double Wieferich pair. Further, we refine a result of Schwarz to obtain similar criteria when only one of the exponents is congruent to 3 $(\mathrm {mod} 4)$. Indeed, in light of the results proved here it is reasonable to suppose that if $q\equiv 3$ $(\mathrm {mod} 4)$, then $p$ and $q$ form a double Wieferich pair.
- C. Bennet, J. Blass, A. M. W. Glass, D. Meronk and R. Steiner, Linear forms in the logarithms of three positive rational numbers, Journal Théorie des Nombres Bordeaux 9 (1997), 97–136.
- D. R. Clother, Eliminating possible counterexamples to Catalan’s conjecture by computation of class numbers of M2-fields, Master’s thesis, Bowling Green State University, 1995.
- R. Ernvall and T. Metsänkylä, On the $p$-divisibility of Fermat quotients, Math. Comp. 66 (1997), no. 219, 1353–1365. MR 1408373, DOI https://doi.org/10.1090/S0025-5718-97-00843-0
- K. Inkeri, On Catalan’s problem, Acta Arith. 9 (1964), 285–290. MR 168518, DOI https://doi.org/10.4064/aa-9-3-285-290
- K. Inkeri, On Catalan’s conjecture, J. Number Theory 34 (1990), no. 2, 142–152. MR 1042488, DOI https://doi.org/10.1016/0022-314X%2890%2990145-H
- A. F. Lavrik, A remark on the Siegel-Brauer theorem concerning the parameters of algebraic number fields, Mat. Zametki 8 (1970), 259–263 (Russian). MR 291125
- Michel Laurent, Maurice Mignotte, and Yuri Nesterenko, Formes linéaires en deux logarithmes et déterminants d’interpolation, J. Number Theory 55 (1995), no. 2, 285–321 (French, with English summary). MR 1366574, DOI https://doi.org/10.1006/jnth.1995.1141
- Stéphane Louboutin, Majorations explicites de $|L(1,\chi )|$, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 1, 11–14 (French, with English and French summaries). MR 1198740, DOI https://doi.org/10.1016/S1631-073X%2802%2902333-6
- S. Louboutin, Computation of relative class numbers of imaginary abelian number fields (to appear).
- Maurice Mignotte, A criterion on Catalan’s equation, J. Number Theory 52 (1995), no. 2, 280–283. MR 1336750, DOI https://doi.org/10.1006/jnth.1995.1070
- M. Mignotte and Y. Roy, Minorations pour l’équation de Catalan, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 377–380.
- Maurice Mignotte and Yves Roy, Catalan’s equation has no new solution with either exponent less than 10651, Experiment. Math. 4 (1995), no. 4, 259–268. MR 1387692
- T. O’Neil, Improved upper bounds on the exponents in Catalan’s equation, manuscript, 1995.
- Paulo Ribenboim, Catalan’s conjecture, Academic Press, Inc., Boston, MA, 1994. Are $8$ and $9$ the only consecutive powers?. MR 1259738
- Wolfgang Schwarz, A note on Catalan’s equation, Acta Arith. 72 (1995), no. 3, 277–279. MR 1347490, DOI https://doi.org/10.4064/aa-72-3-277-279
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674
Retrieve articles in Mathematics of Computation with MSC (1991): 11D41, 11R29
Retrieve articles in all journals with MSC (1991): 11D41, 11R29
Additional Information
Ray Steiner
Affiliation:
Department of Mathematics, Bowling Green State University, Bowling Green, Ohio 43403
Email:
steiner@math.bgsu.edu
Keywords:
Catalan’s equation,
class number bounds,
algebraic number fields
Received by editor(s):
March 17, 1997
Article copyright:
© Copyright 1998
American Mathematical Society