Vortex method

for two dimensional Euler equations

in bounded domains with boundary correction

Author:
Lung-an Ying

Journal:
Math. Comp. **67** (1998), 1383-1400

MSC (1991):
Primary 65M99; Secondary 35Q35, 76C05

DOI:
https://doi.org/10.1090/S0025-5718-98-00970-3

MathSciNet review:
1474659

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The vortex method for the initial-boundary value problems of the Euler equations for incompressible flow is studied. A boundary correction technique is introduced to generate second order accuracy. Convergence and error estimates are proved.

**1.**R. A. Adams,*Sobolev Spaces*, Academic Press, 1975. MR**56:9247****2.**S. Agmon, The approach to the Dirichlet problems, Anali della Scuola Sup. Pisa, 13, 1959, 405-448. MR**23:A2609****3.**S. Agmon A. Douglis and L.Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math., 17, 1959, 623-727. MR**23:A2610****4.**C. Anderson and C. Greengard, On vortex methods, SIAM J. Numer. Anal., 22, 1985, 413-440. MR**86j:76016****5.**J. T. Beale and A. Majda, Vortex methods I: Convergence in three dimensions, Math. Comp., 39, 1982, 1-27. MR**83i:65069a****6.**J. T. Beale and A. Majda, Vortex methods II: Higher accuracy in two and three dimensions, Math. Comp., 39, 1982, 29-52. MR**83i:65069b****7.**C. Chiu and R. A. Nicolaides, Convergence of a higher-order vortex method for two dimensional Euler equations, Math. Comp., 51, 1988, 507-534. MR**84c:65117****8.**A. J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech., 57, 1973, 785-796. MR**52:16280****9.**O. H. Hald, Convergence of vortex methods for Euler's equations, II, SIAM J. Numer. Anal., 16, 1979, 726-755. MR**81b:76015b****10.**O. H. Hald, Convergence of vortex methods for Euler's equations III, SIAM J. Numer. Anal., 24, 1987, 538-582. MR**88i:76003****11.**O. H. Hald and V. M. DelPrete, Convergence of vortex methods for Euler's equations, Math. Comp., 32, 1978, 791-809. MR**81b:76015a****12.**R. A. Nicolaides, Construction of higher order accurate vortex and particle methods, Appl. Numer. Math., 2, 1986, 313-320. MR**87k:65119****13.**P. A. Raviart, An analysis of particle methods, Lecture Notes in Mathematics vol. 1127, Springer-Verlag, 1985, 243-324. MR**87h:76010****14.**R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20, 1975, 32-43. MR**55:3573****15.**Lung-An Ying, Convergence of vortex methods for initial boundary value problems, Advances in Math. (China), 20, 1991, 86-102. MR**92b:65103****16.**Lung-An Ying, Convergence of vortex methods for three dimensional Euler equations in bounded domains, SIAM J. Numer. Anal., 32, 1995, 542-559. MR**96a:76082****17.**Lung-An Ying and P. Zhang, Fully discrete convergence estimates for vortex methods in bounded domains, SIAM J. Numer. Anal., 31, 1994, 344-361. MR**95b:65131****18.**Lung-An Ying and P. Zhang, Vortex Methods, Science Press, Bejing, 1997.

Retrieve articles in *Mathematics of Computation*
with MSC (1991):
65M99,
35Q35,
76C05

Retrieve articles in all journals with MSC (1991): 65M99, 35Q35, 76C05

Additional Information

**Lung-an Ying**

Affiliation:
Department of Mathematics, Peking University;
Research Institute for Mathematical Sciences, Kyoto University

Address at time of publication:
School of Mathematical Sciences, Peking University, Beijing, 100871, China

Email:
yingla@sxx0.math.pku.edu.cn

DOI:
https://doi.org/10.1090/S0025-5718-98-00970-3

Keywords:
Vortex method,
Euler equation,
initial boundary value problem

Received by editor(s):
March 22, 1996

Received by editor(s) in revised form:
April 23, 1997

Article copyright:
© Copyright 1998
American Mathematical Society