Vortex method for two dimensional Euler equations in bounded domains with boundary correction
HTML articles powered by AMS MathViewer
- by Lung-an Ying PDF
- Math. Comp. 67 (1998), 1383-1400 Request permission
Abstract:
The vortex method for the initial-boundary value problems of the Euler equations for incompressible flow is studied. A boundary correction technique is introduced to generate second order accuracy. Convergence and error estimates are proved.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Shmuel Agmon, The $L_{p}$ approach to the Dirichlet problem. I. Regularity theorems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), 405–448. MR 125306
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI 10.1002/cpa.3160120405
- Christopher Anderson and Claude Greengard, On vortex methods, SIAM J. Numer. Anal. 22 (1985), no. 3, 413–440. MR 787568, DOI 10.1137/0722025
- J. Thomas Beale and Andrew Majda, Vortex methods. I. Convergence in three dimensions, Math. Comp. 39 (1982), no. 159, 1–27. MR 658212, DOI 10.1090/S0025-5718-1982-0658212-5
- J. Thomas Beale and Andrew Majda, Vortex methods. I. Convergence in three dimensions, Math. Comp. 39 (1982), no. 159, 1–27. MR 658212, DOI 10.1090/S0025-5718-1982-0658212-5
- V. I. Vasil′ev, On linear two-layer difference schemes for unsteady filtration problems, Dokl. Akad. Nauk BSSR 27 (1983), no. 4, 304–306 (Russian, with English summary). MR 697475
- Alexandre Joel Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57 (1973), no. 4, 785–796. MR 395483, DOI 10.1017/S0022112073002016
- Ole Hald and Vincenza Mauceri del Prete, Convergence of vortex methods for Euler’s equations, Math. Comp. 32 (1978), no. 143, 791–809. MR 492039, DOI 10.1090/S0025-5718-1978-0492039-1
- Ole H. Hald, Convergence of vortex methods for Euler’s equations. III, SIAM J. Numer. Anal. 24 (1987), no. 3, 538–582. MR 888750, DOI 10.1137/0724039
- Ole Hald and Vincenza Mauceri del Prete, Convergence of vortex methods for Euler’s equations, Math. Comp. 32 (1978), no. 143, 791–809. MR 492039, DOI 10.1090/S0025-5718-1978-0492039-1
- R. A. Nicolaides, Construction of higher order accurate vortex and particle methods, Appl. Numer. Math. 2 (1986), no. 3-5, 313–320. MR 863990, DOI 10.1016/0168-9274(86)90036-X
- P.-A. Raviart, An analysis of particle methods, Numerical methods in fluid dynamics (Como, 1983) Lecture Notes in Math., vol. 1127, Springer, Berlin, 1985, pp. 243–324. MR 802214, DOI 10.1007/BFb0074532
- Roger Temam, On the Euler equations of incompressible perfect fluids, J. Functional Analysis 20 (1975), no. 1, 32–43. MR 0430568, DOI 10.1016/0022-1236(75)90052-x
- Lungan Ying, Convergence of vortex methods for initial-boundary value problems, Adv. in Math. (China) 20 (1991), no. 1, 86–102. MR 1106723
- Lung An Ying, Convergence of vortex methods for three-dimensional Euler equations in bounded domains, SIAM J. Numer. Anal. 32 (1995), no. 2, 542–559. MR 1324301, DOI 10.1137/0732023
- Lung An Ying and Ping Wen Zhang, Fully discrete convergence estimates for vortex methods in bounded domains, SIAM J. Numer. Anal. 31 (1994), no. 2, 344–361. MR 1276704, DOI 10.1137/0731018
- Lung-An Ying and P. Zhang, Vortex Methods, Science Press, Bejing, 1997.
Additional Information
- Lung-an Ying
- Affiliation: Department of Mathematics, Peking University; Research Institute for Mathematical Sciences, Kyoto University
- Address at time of publication: School of Mathematical Sciences, Peking University, Beijing, 100871, China
- Email: yingla@sxx0.math.pku.edu.cn
- Received by editor(s): March 22, 1996
- Received by editor(s) in revised form: April 23, 1997
- © Copyright 1998 American Mathematical Society
- Journal: Math. Comp. 67 (1998), 1383-1400
- MSC (1991): Primary 65M99; Secondary 35Q35, 76C05
- DOI: https://doi.org/10.1090/S0025-5718-98-00970-3
- MathSciNet review: 1474659