Fast algorithms for discrete polynomial transforms
HTML articles powered by AMS MathViewer
- by Daniel Potts, Gabriele Steidl and Manfred Tasche PDF
- Math. Comp. 67 (1998), 1577-1590 Request permission
Abstract:
Consider the Vandermonde-like matrix ${\mathbf {P}}:=(P_k(\cos \frac {j\pi }{N}))_{j,k=0}^N$, where the polynomials $P_k$ satisfy a three-term recurrence relation. If $P_k$ are the Chebyshev polynomials $T_k$, then ${\mathbf {P}}$ coincides with ${\mathbf {C}}_{N+1}:= (\cos \frac {jk\pi }{N})_{j,k=0}^N$. This paper presents a new fast algorithm for the computation of the matrix-vector product ${\mathbf {Pa}}$ in $O(N \log ^2N)$ arithmetical operations. The algorithm divides into a fast transform which replaces ${\mathbf {Pa}}$ with ${\mathbf {C}}_{N+1} {\mathbf {\tilde a}}$ and a subsequent fast cosine transform. The first and central part of the algorithm is realized by a straightforward cascade summation based on properties of associated polynomials and by fast polynomial multiplications. Numerical tests demonstrate that our fast polynomial transform realizes ${\mathbf {Pa}}$ with almost the same precision as the Clenshaw algorithm, but is much faster for $N\ge 128$.References
- Bradley K. Alpert and Vladimir Rokhlin, A fast algorithm for the evaluation of Legendre expansions, SIAM J. Sci. Statist. Comput. 12 (1991), no. 1, 158–179. MR 1078802, DOI 10.1137/0912009
- G. Baszenski and M. Tasche, Fast polynomial multiplication and convolutions related to the discrete cosine transform, Linear Algebra Appl. 252 (1997), 1 – 25.
- S. Belmehdi, On the associated orthogonal polynomials, J. Comput. Appl. Math. 32 (1990), no. 3, 311–319. MR 1090883, DOI 10.1016/0377-0427(90)90041-W
- T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978. MR 0481884
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- James R. Driscoll and Dennis M. Healy Jr., Computing Fourier transforms and convolutions on the $2$-sphere, Adv. in Appl. Math. 15 (1994), no. 2, 202–250. MR 1277214, DOI 10.1006/aama.1994.1008
- J. R. Driscoll, D. M. Healy and D. Rockmore, Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs, SIAM J. Sci. Comput. 26 (1997), 1066–1099.
- A. Dutt, M. Gu, and V. Rokhlin, Fast algorithms for polynomial interpolation, integration, and differentiation, SIAM J. Numer. Anal. 33 (1996), no. 5, 1689–1711. MR 1411845, DOI 10.1137/0733082
- Walter Gautschi, The condition of Vandermonde-like matrices involving orthogonal polynomials, Linear Algebra Appl. 52/53 (1983), 293–300. MR 709357, DOI 10.1016/0024-3795(83)80020-2
- D. M. Healy, S. Moore and D. Rockmore, Efficiency and stability issues in the numerical convolution of Fourier transforms and convolutions on the 2–sphere, Technical Report, Dartmouth College, 1994.
- Nicholas J. Higham, Fast solution of Vandermonde-like systems involving orthogonal polynomials, IMA J. Numer. Anal. 8 (1988), no. 4, 473–486. MR 975608, DOI 10.1093/imanum/8.4.473
- D. Maslen, A polynomial approach to orthogonal polynomial transforms, Research Report, Max–Planck–Institute of Mathematics, Bonn, 1994.
- S. S. B. Moore, Efficient stabilization methods for fast polynomial transforms, Thesis, Dartmouth College, 1994.
- Sean S. B. Moore, Dennis M. Healy Jr., and Daniel N. Rockmore, Symmetry stabilization for fast discrete monomial transforms and polynomial evaluation, Linear Algebra Appl. 192 (1993), 249–299. Computational linear algebra in algebraic and related problems (Essen, 1992). MR 1236746, DOI 10.1016/0024-3795(93)90246-K
- S. A. Orszag, Fast eigenfunction transforms, in: Science and Computers (G.C. Rota, ed.), Academic Press, New York, 1986, 23 – 30.
- V. Pan, Fast evaluation and interpolation at the Chebyshev sets of points, Appl. Math. Lett. 34 (1989), 255 – 258.
- K. R. Rao and P. Yip, Discrete cosine transform, Academic Press, Inc., Boston, MA, 1990. Algorithms, advantages, applications. MR 1080969
- Gabriele Steidl, Fast radix-$p$ discrete cosine transform, Appl. Algebra Engrg. Comm. Comput. 3 (1992), no. 1, 39–46. MR 1325744, DOI 10.1007/BF01189022
- G. Steidl and M. Tasche, A polynomial approach to fast algorithms for discrete Fourier-cosine and Fourier-sine transforms, Math. Comp. 56 (1991), no. 193, 281–296. MR 1052103, DOI 10.1090/S0025-5718-1991-1052103-1
- Jet Wimp, Computation with recurrence relations, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 727118
Additional Information
- Daniel Potts
- Affiliation: Fachbereich Mathematik, Universität Rostock, D–18051 Rostock
- Email: daniel.potts@stud.uni-rostock.de
- Gabriele Steidl
- Affiliation: Fakultät für Mathematik und Informatik, Universität Mannheim, D–68131 Mannheim
- Email: steidl@kiwi.math.uni-mannheim.de
- Manfred Tasche
- Affiliation: Fachbereich Mathematik, Universität Rostock, D–18051 Rostock
- Email: manfred.tasche@mathematik.uni-rostock.de
- Received by editor(s): March 15, 1996
- Received by editor(s) in revised form: March 13, 1997
- © Copyright 1998 American Mathematical Society
- Journal: Math. Comp. 67 (1998), 1577-1590
- MSC (1991): Primary 65T99, 42C10, 33C25
- DOI: https://doi.org/10.1090/S0025-5718-98-00975-2
- MathSciNet review: 1474655
Dedicated: Dedicated to Professor G. Maess on the occasion of his 60th birthday