Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computing $\psi (x)$


Authors: Marc Deléglise and Joël Rivat
Journal: Math. Comp. 67 (1998), 1691-1696
MSC (1991): Primary 11Y70, 11N56
DOI: https://doi.org/10.1090/S0025-5718-98-00977-6
MathSciNet review: 1474649
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\Lambda$ denote the Von Mangoldt function and $\psi (x)=\sum _{n \leq x} \Lambda (n)$. We describe an elementary method for computing isolated values of $\psi (x)$. The complexity of the algorithm is $O(x^{2/3}(\log \log x)^{1/3})$ time and $O(x^{1/3}(\log \log x)^{2/3})$ space. A table of values of $\psi (x)$ for $x$ up to $10^{15}$ is included, and some times of computation are given.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Mathematics of Computation with MSC (1991): 11Y70, 11N56

Retrieve articles in all journals with MSC (1991): 11Y70, 11N56


Additional Information

Marc Deléglise
Affiliation: Institut Girard Desargues, UPRES-A 5028 Mathematiques, Université Lyon I, 69622 Villeurbanne Cedex, France
Email: deleglis@desargues.univ-lyon1.fr

Joël Rivat
Affiliation: Institut Girard Desargues, UPRES-A 5028 Mathematiques, Université Lyon I, 69622 Villeurbanne Cedex, France
Email: rivat@desargues.univ-lyon1.fr

Received by editor(s): January 23, 1997
Article copyright: © Copyright 1998 American Mathematical Society