Bounds for eigenvalues and condition numbers in the $p$-version of the finite element method
HTML articles powered by AMS MathViewer
- by Ning Hu, Xian-Zhong Guo and I. Norman Katz PDF
- Math. Comp. 67 (1998), 1423-1450 Request permission
Abstract:
In this paper, we present a theory for bounding the minimum eigenvalues, maximum eigenvalues, and condition numbers of stiffness matrices arising from the $p$-version of finite element analysis. Bounds are derived for the eigenvalues and the condition numbers, which are valid for stiffness matrices based on a set of general basis functions that can be used in the $p$-version. For a set of hierarchical basis functions satisfying the usual local support condition that has been popularly used in the $p$-version, explicit bounds are derived for the minimum eigenvalues, maximum eigenvalues, and condition numbers of stiffness matrices. We prove that the condition numbers of the stiffness matrices grow like $p^{4(d-1)}$, where $d$ is the number of dimensions. Our results disprove a conjecture of Olsen and Douglas in which the authors assert that “regardless of the choice of basis, the condition numbers grow like $p^{4d}$ or faster". Numerical results are also presented which verify that our theoretical bounds are correct.References
- I. Babuška, B. A. Szabo, and I. N. Katz, The $p$-version of the finite element method, SIAM J. Numer. Anal. 18 (1981), no. 3, 515–545. MR 615529, DOI 10.1137/0718033
- I. Babuška and Manil Suri, The optimal convergence rate of the $p$-version of the finite element method, SIAM J. Numer. Anal. 24 (1987), no. 4, 750–776. MR 899702, DOI 10.1137/0724049
- Ivo Babuška and Manil Suri, The $p$- and $h$-$p$ versions of the finite element method, an overview, Comput. Methods Appl. Mech. Engrg. 80 (1990), no. 1-3, 5–26. Spectral and high order methods for partial differential equations (Como, 1989). MR 1067939, DOI 10.1016/0045-7825(90)90011-A
- I. Babuška, B. Q. Guo, and J. E. Osborn, Regularity and numerical solution of eigenvalue problems with piecewise analytic data, SIAM J. Numer. Anal. 26 (1989), no. 6, 1534–1560. MR 1025104, DOI 10.1137/0726090
- I. Babuška, B. Q. Guo, and E. P. Stephan, The $h$-$p$ version of the boundary element method with geometric mesh on polygonal domains, Comput. Methods Appl. Mech. Engrg. 80 (1990), no. 1-3, 319–325. Spectral and high order methods for partial differential equations (Como, 1989). MR 1067959, DOI 10.1016/0045-7825(90)90036-L
- I. Babuška, A. Craig, J. Mandel, and J. Pitkäranta, Efficient preconditioning for the $p$-version finite element method in two dimensions, SIAM J. Numer. Anal. 28 (1991), no. 3, 624–661. MR 1098410, DOI 10.1137/0728034
- I. Babuška, M. Griebel, and J. Pitkäranta, The problem of selecting the shape functions for a $p$-type finite element, Internat. J. Numer. Methods Engrg. 28 (1989), no. 8, 1891–1908. MR 1008139, DOI 10.1002/nme.1620280813
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
- Randolph E. Bank and Todd Dupont, An optimal order process for solving finite element equations, Math. Comp. 36 (1981), no. 153, 35–51. MR 595040, DOI 10.1090/S0025-5718-1981-0595040-2
- D. Braess and W. Hackbusch, A new convergence proof for the multigrid method including the $V$-cycle, SIAM J. Numer. Anal. 20 (1983), no. 5, 967–975. MR 714691, DOI 10.1137/0720066
- James H. Bramble and Joseph E. Pasciak, New convergence estimates for multigrid algorithms, Math. Comp. 49 (1987), no. 180, 311–329. MR 906174, DOI 10.1090/S0025-5718-1987-0906174-X
- N. Hu, Multi-p processes: Iterative algorithms and preconditionings for the p-version of finite element analysis, Doctoral dissertation, Department of Systems Science and Mathematics, Washington University inSt. Louis, August, 1994.
- N. Hu, X. Guo and I.N. Katz, Lower and upper bounds for eigenvalues and condition numbers in the p-version of the finite element method, SIAM annual meeting, 1995, Charlotte, North Carolina.
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 2nd ed., Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1989. MR 1002570
- Claes Johnson, Numerical solution of partial differential equations by the finite element method, Cambridge University Press, Cambridge, 1987. MR 925005
- Jean-François Maitre and Olivier Pourquier, Conditionnements et préconditionnements diagonaux pour la $p$-version des méthodes d’éléments finis pour des problèmes elliptiques du second ordre, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 6, 583–586 (French, with English and French summaries). MR 1270086
- Jean-François Maitre and Olivier Pourquier, Condition number and diagonal preconditioning: comparison of the $p$-version and the spectral element methods, Numer. Math. 74 (1996), no. 1, 69–84. MR 1400216, DOI 10.1007/s002110050208
- J. T. Marti, Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems, Computational Mathematics and Applications, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1986. MR 918971
- G. Sansone, Orthogonal functions, Pure and Applied Mathematics, Vol. IX, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1959. Revised English ed; Translated from the Italian by A. H. Diamond; with a foreword by E. Hille. MR 0103368
- Barna Szabó and Ivo Babuška, Finite element analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1991. MR 1164869
- Stress Check, http://www.esrd.com, Engineering Software Research and Development, Inc., St. Louis, MO 63117, 1994.
- Elwood T. Olsen and Jim Douglas Jr., Bounds on spectral condition numbers of matrices arising in the $p$-version of the finite element method, Numer. Math. 69 (1995), no. 3, 333–352. MR 1312785, DOI 10.1007/s002110050096
Additional Information
- Ning Hu
- Affiliation: Department of Systems Science and Mathematics, Washington University in St. Louis, St. Louis, MO 63130
- Address at time of publication: Endocardial Solutions, 1350 Energy Lane, St. Paul, MN 55108
- Email: ning@endo.com
- Xian-Zhong Guo
- Affiliation: Department of Mechanical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Email: guo@esrd.com
- I. Norman Katz
- Affiliation: Department of Systems Science and Mathematics, Washington University in St. Louis, St. Louis, MO 63130
- Email: katz@zach.wustl.edu
- Received by editor(s): July 15, 1996
- Received by editor(s) in revised form: April 1, 1997
- Additional Notes: This research was supported by Air Force Office of Scientific Research under grant number AFOSR 92-J-0043, and by the National Science Foundation under grant number DMS-9626202. Some of the results presented here are part of the doctoral dissertation of the first author.
- © Copyright 1998 American Mathematical Society
- Journal: Math. Comp. 67 (1998), 1423-1450
- MSC (1991): Primary 65N30; Secondary 65N22, 65F33
- DOI: https://doi.org/10.1090/S0025-5718-98-00983-1
- MathSciNet review: 1484898