An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation
HTML articles powered by AMS MathViewer
- by W. Dörfler and M. Rumpf PDF
- Math. Comp. 67 (1998), 1361-1382 Request permission
Abstract:
We derive a posteriori error estimates for the approximation of linear elliptic problems on domains with piecewise smooth boundary. The numerical solution is assumed to be defined on a Finite Element mesh, whose boundary vertices are located on the boundary of the continuous problem. No assumption is made on a geometrically fitting shape. A posteriori error estimates are given in the energy norm and the $L^2$-norm, and efficiency of the adaptive algorithm is proved in the case of a saturated boundary approximation. Furthermore, a strategy is presented to compute the effect of the non-discretized part of the domain on the error starting from a coarse mesh. This especially implies that parts of the domain, where the measured error is small, stay non-discretized. The presented algorithm includes a stable path following to supply a sufficient polygonal approximation of the boundary, the reliable computation of the a posteriori estimates and a mesh adaptation based on Delaunay techniques. Numerical examples illustrate that errors outside the initial discretization will be detected.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Alt, H. W. (1985): Lineare Funktionalanalysis. Springer, Berlin.
- Eberhard Bänsch, Local mesh refinement in $2$ and $3$ dimensions, Impact Comput. Sci. Engrg. 3 (1991), no. 3, 181–191. MR 1141298, DOI 10.1016/0899-8248(91)90006-G
- James H. Bramble and J. Thomas King, A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries, Math. Comp. 63 (1994), no. 207, 1–17. MR 1242055, DOI 10.1090/S0025-5718-1994-1242055-6
- I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736–754. MR 483395, DOI 10.1137/0715049
- R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), no. 170, 283–301. MR 777265, DOI 10.1090/S0025-5718-1985-0777265-X
- Baker, T. J. (1989): Automatic mesh generation for complex three–dimensional regions using a constrained Delaunay triangulation. Engineering with Computers, 5, 161–175.
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 9 (1975), no. R-2, 77–84 (English, with Loose French summary). MR 0400739
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- W. Dörfler, A robust adaptive strategy for the nonlinear Poisson equation, Computing 55 (1995), no. 4, 289–304 (English, with English and German summaries). MR 1370104, DOI 10.1007/BF02238484
- P. L. George and F. Hermeline, Delaunay’s mesh of a convex polyhedron in dimension $d$. Application to arbitrary polyhedra, Internat. J. Numer. Methods Engrg. 33 (1992), no. 5, 975–995. MR 1153607, DOI 10.1002/nme.1620330507
- B. Hamann, H. J. Thornburg, and G. Hong, Automatic unstructured grid generation based on iterative point insertion, Computing 55 (1995), no. 2, 135–161 (English, with English and German summaries). MR 1345245, DOI 10.1007/BF02238098
- Jan Kadlec, The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain, Czechoslovak Math. J. 14(89) (1964), 386–393 (Russian, with English summary). MR 170088, DOI 10.21136/CMJ.1964.100628
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 0350177
- Rebay, S. (1993): Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer–Watson algorithm. J. Comput. Physics, 106, 125–138.
- M.-Cecilia Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid techniques, Internat. J. Numer. Methods Engrg. 20 (1984), no. 4, 745–756. MR 739618, DOI 10.1002/nme.1620200412
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- Jerome Spanier and Earl H. Maize, Quasi-random methods for estimating integrals using relatively small samples, SIAM Rev. 36 (1994), no. 1, 18–44. MR 1267048, DOI 10.1137/1036002
- R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), 1994, pp. 67–83. MR 1284252, DOI 10.1016/0377-0427(94)90290-9
- R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62 (1994), no. 206, 445–475. MR 1213837, DOI 10.1090/S0025-5718-1994-1213837-1
- Weatherhill, N. P. (1992): Delaunay triangulation in CFD. Comput. Math. Appl., 24.2, 129–150.
- Harry Yserentant, On the multilevel splitting of finite element spaces, Numer. Math. 49 (1986), no. 4, 379–412. MR 853662, DOI 10.1007/BF01389538
Additional Information
- W. Dörfler
- Affiliation: Institut für Angewandte Mathematik, Universität Freiburg, Hermann-Herder- Strasse 10, D-79104 Freiburg, Germany
- Email: willy@mathematik.uni-freiburg.de
- M. Rumpf
- Affiliation: Institut für Angewandte Mathematik, Universität Bonn, Wegelerstrasse 6, D-52115 Bonn, Germany
- MR Author ID: 604100
- Email: rumpf@iam.uni-bonn.de
- Received by editor(s): March 4, 1996
- Received by editor(s) in revised form: January 23, 1997
- © Copyright 1998 American Mathematical Society
- Journal: Math. Comp. 67 (1998), 1361-1382
- MSC (1991): Primary 65N15, 65N30, 65N50
- DOI: https://doi.org/10.1090/S0025-5718-98-00993-4
- MathSciNet review: 1489969