Numerical integration of constrained Hamiltonian systems using Dirac brackets
HTML articles powered by AMS MathViewer
- by Werner M. Seiler PDF
- Math. Comp. 68 (1999), 661-681 Request permission
Abstract:
We study the numerical properties of the equations of motion of constrained systems derived with Dirac brackets. This formulation is compared with one based on the extended Hamiltonian. As concrete examples, a pendulum in Cartesian coordinates and a chain molecule are treated.References
- H.C. Andersen, Rattle — a velocity version of the Shake algorithm for molecular dynamics calculations, J. Comp. Phys. 52 (1983), 24–34.
- V. Arnold, Les méthodes mathématiques de la mécanique classique, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. MR 0474391
- Uri M. Ascher, Hongsheng Chin, and Sebastian Reich, Stabilization of DAEs and invariant manifolds, Numer. Math. 67 (1994), no. 2, 131–149. MR 1262777, DOI 10.1007/s002110050020
- J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Comput. Methods Appl. Mech. Engrg. 1 (1972), 1–16. MR 391628, DOI 10.1016/0045-7825(72)90018-7
- K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, Classics in Applied Mathematics, vol. 14, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. Revised and corrected reprint of the 1989 original. MR 1363258
- G. J. Cooper, Stability of Runge-Kutta methods for trajectory problems, IMA J. Numer. Anal. 7 (1987), no. 1, 1–13. MR 967831, DOI 10.1093/imanum/7.1.1
- D. J. Dichmann, J. H. Maddocks, and R. L. Pego, Hamiltonian dynamics of an elastica and the stability of solitary waves, Arch. Rational Mech. Anal. 135 (1996), no. 4, 357–396. MR 1423001, DOI 10.1007/BF02198477
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- P. A. M. Dirac, Generalized Hamiltonian dynamics, Proc. Roy. Soc. London Ser. A 246 (1958), 326–332. MR 94205, DOI 10.1098/rspa.1958.0141
- G. V. Dunne, R. Jackiw, and C. A. Trugenberger, “Topological” (Chern-Simons) quantum mechanics, Phys. Rev. D (3) 41 (1990), no. 2, 661–666. MR 1032206, DOI 10.1103/PhysRevD.41.661
- Herbert Goldstein, Classical mechanics, 2nd ed., Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Reading, Mass., 1980. MR 575343
- Wolfgang Hahn, Stability of motion, Die Grundlehren der mathematischen Wissenschaften, Band 138, Springer-Verlag New York, Inc., New York, 1967. Translated from the German manuscript by Arne P. Baartz. MR 0223668
- Marc Henneaux and Claudio Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton, NJ, 1992. MR 1191617
- Laurent Jay, Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems, SIAM J. Numer. Anal. 33 (1996), no. 1, 368–387. MR 1377258, DOI 10.1137/0733019
- B. Leimkuhler and S. Reich, Symplectic integration of constrained Hamiltonian systems, Math. Comp. 63 (1994), no. 208, 589–605. MR 1250772, DOI 10.1090/S0025-5718-1994-1250772-7
- Benedict J. Leimkuhler and Robert D. Skeel, Symplectic numerical integrators in constrained Hamiltonian systems, J. Comput. Phys. 112 (1994), no. 1, 117–125. MR 1277499, DOI 10.1006/jcph.1994.1085
- Sarben Sarkar (ed.), Nonlinear phenomena and chaos, Malvern Physics Series, Adam Hilger, Ltd., Bristol, 1986. MR 854695
- John H. Maddocks and Robert L. Pego, An unconstrained Hamiltonian formulation for incompressible fluid flow, Comm. Math. Phys. 170 (1995), no. 1, 207–217. MR 1331698
- P.C. Moan, The numerical solution of ordinary differential equations with conservation laws, Master’s thesis, Norwegian Institute of Technology, Trondheim, 1996.
- G.R.W. Quispel and H.W. Capel, Solving ODEs numerically while preserving all first integrals, Preprint, La Trobe University, Melbourne, 1997.
- G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral, J. Phys. A 29 (1996), no. 13, L341–L349. MR 1400157, DOI 10.1088/0305-4470/29/13/006
- Sebastian Reich, Symplectic integration of constrained Hamiltonian systems by composition methods, SIAM J. Numer. Anal. 33 (1996), no. 2, 475–491. MR 1388484, DOI 10.1137/0733025
- Rick Salmon, Semigeostrophic theory as a Dirac-bracket projection, J. Fluid Mech. 196 (1988), 345–358. MR 1018032, DOI 10.1017/S0022112088002733
- J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian problems, Applied Mathematics and Mathematical Computation, vol. 7, Chapman & Hall, London, 1994. MR 1270017
- Werner M. Seiler, Involution and constrained dynamics. II. The Faddeev-Jackiw approach, J. Phys. A 28 (1995), no. 24, 7315–7331. MR 1381422
- —, Momentum versus position projections for constrained Hamiltonian systems, Num. Algo., submitted.
- —, Numerical analysis of constrained Hamiltonian systems and the formal theory of differential equations, Math. Comp. Simul. 45 (1998), 561–576.
- Werner M. Seiler and Robin W. Tucker, Involution and constrained dynamics. I. The Dirac approach, J. Phys. A 28 (1995), no. 15, 4431–4451. MR 1351940
- Carl Ludwig Siegel and Jürgen K. Moser, Lectures on celestial mechanics, Die Grundlehren der mathematischen Wissenschaften, Band 187, Springer-Verlag, New York-Heidelberg, 1971. Translation by Charles I. Kalme. MR 0502448
- Jędrzej Śniatycki, Dirac brackets in geometric dynamics, Ann. Inst. H. Poincaré Sect. A (N.S.) 20 (1974), 365–372. MR 358860
- Kurt Sundermeyer, Constrained dynamics, Lecture Notes in Physics, vol. 169, Springer-Verlag, Berlin-New York, 1982. With applications to Yang\mhy Mills theory, general relativity, classical spin, dual string model. MR 678773
Additional Information
- Werner M. Seiler
- Affiliation: Lehrstuhl I für Mathematik, Universität Mannheim, D-68131 Mannheim, Germany
- ORCID: 0000-0002-0565-1334
- Email: wms@ira.uka.de
- Received by editor(s): August 22, 1996
- Received by editor(s) in revised form: March 17, 1997, and July 30, 1997
- Additional Notes: This work was supported by the Deutsche Forschungsgemeinschaft.
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp. 68 (1999), 661-681
- MSC (1991): Primary 65L05, 70H05; Secondary 70--08
- DOI: https://doi.org/10.1090/S0025-5718-99-01010-8
- MathSciNet review: 1604375