Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility
HTML articles powered by AMS MathViewer
- by John W. Barrett and James F. Blowey PDF
- Math. Comp. 68 (1999), 487-517 Request permission
Abstract:
We consider the Cahn-Hilliard equation with a logarithmic free energy and non-degenerate concentration dependent mobility. In particular we prove that there exists a unique solution for sufficiently smooth initial data. Further, we prove an error bound for a fully practical piecewise linear finite element approximation in one and two space dimensions. Finally some numerical experiments are presented.References
- R. A. Adams and John Fournier, Cone conditions and properties of Sobolev spaces, J. Math. Anal. Appl. 61 (1977), no. 3, 713–734. MR 463902, DOI 10.1016/0022-247X(77)90173-1
- John W. Barrett and James F. Blowey, An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy, Numer. Math. 72 (1995), no. 1, 1–20. MR 1359705, DOI 10.1007/s002110050157
- John W. Barrett and James F. Blowey, An error bound for the finite element approximation of a model for phase separation of a multi-component alloy, IMA J. Numer. Anal. 16 (1996), no. 2, 257–287. MR 1382718, DOI 10.1093/imanum/16.2.257
- J.W. Barrett and J.F. Blowey, Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy, Numer. Math. 77 (1997), 1–34.
- J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis, European J. Appl. Math. 2 (1991), no. 3, 233–280. MR 1123143, DOI 10.1017/S095679250000053X
- J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical analysis, European J. Appl. Math. 3 (1992), no. 2, 147–179. MR 1166255, DOI 10.1017/S0956792500000759
- J. W. Cahn, C. M. Elliott, and A. Novick-Cohen, The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature, European J. Appl. Math. 7 (1996), no. 3, 287–301. MR 1401172, DOI 10.1017/S0956792500002369
- J.W. Cahn and J.E. Hilliard, Spinodal decomposition: A reprise, Acta Metall. 19 (1971), 151–161.
- J.F. Cialvaldini, Analyse numérique d’un problème de Stefan à deux phases par une méthode d’elements finis, SIAM J. Numer. Anal. 12 (1975), 464–487.
- M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math. 63 (1992), no. 1, 39–65. MR 1182511, DOI 10.1007/BF01385847
- Ha Dang, Stability and boundary layer properties of Cahn-Hilliard equations, Ph.D. Thesis, University of Utah (1995).
- C. M. Elliott, Error analysis of the enthalpy method for the Stefan problem, IMA J. Numer. Anal. 7 (1987), no. 1, 61–71. MR 967835, DOI 10.1093/imanum/7.1.61
- Charles M. Elliott and Harald Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal. 27 (1996), no. 2, 404–423. MR 1377481, DOI 10.1137/S0036141094267662
- C.M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix, Physica D 109 (1997) pp. 242–256.
- Charles M. Elliott and Stig Larsson, A finite element model for the time-dependent Joule heating problem, Math. Comp. 64 (1995), no. 212, 1433–1453. MR 1308451, DOI 10.1090/S0025-5718-1995-1308451-4
- C.M. Elliott and S. Luckhaus, A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy. IMA, University of Minnesota, Preprint 887 (1991).
- Jing Xue Yin, On the existence of nonnegative continuous solutions of the Cahn-Hilliard equation, J. Differential Equations 97 (1992), no. 2, 310–327. MR 1167537, DOI 10.1016/0022-0396(92)90075-X
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 0259693
- R.H. Nochetto, Finite element methods for parabolic free boundary problems, in Advances in numerical analysis vol 1, (W. Light ed.), O.U.P. (1991), pp. 34–95.
Additional Information
- John W. Barrett
- Affiliation: Department of Mathematics, Imperial College, London SW7 2BZ, U.K.
- MR Author ID: 31635
- Email: j.barrett@ic.ac.uk
- James F. Blowey
- Affiliation: Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, U.K.
- Email: j.f.blowey@durham.ac.uk
- Received by editor(s): July 16, 1996
- Received by editor(s) in revised form: September 16, 1997
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp. 68 (1999), 487-517
- MSC (1991): Primary 65M60, 65M15, 35K55, 35K35, 82C26
- DOI: https://doi.org/10.1090/S0025-5718-99-01015-7
- MathSciNet review: 1609678