## Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility

HTML articles powered by AMS MathViewer

- by John W. Barrett and James F. Blowey PDF
- Math. Comp.
**68**(1999), 487-517 Request permission

## Abstract:

We consider the Cahn-Hilliard equation with a logarithmic free energy and non-degenerate concentration dependent mobility. In particular we prove that there exists a unique solution for sufficiently smooth initial data. Further, we prove an error bound for a fully practical piecewise linear finite element approximation in one and two space dimensions. Finally some numerical experiments are presented.## References

- R. A. Adams and John Fournier,
*Cone conditions and properties of Sobolev spaces*, J. Math. Anal. Appl.**61**(1977), no. 3, 713–734. MR**463902**, DOI 10.1016/0022-247X(77)90173-1 - John W. Barrett and James F. Blowey,
*An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy*, Numer. Math.**72**(1995), no. 1, 1–20. MR**1359705**, DOI 10.1007/s002110050157 - John W. Barrett and James F. Blowey,
*An error bound for the finite element approximation of a model for phase separation of a multi-component alloy*, IMA J. Numer. Anal.**16**(1996), no. 2, 257–287. MR**1382718**, DOI 10.1093/imanum/16.2.257 - J.W. Barrett and J.F. Blowey,
*Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy*, Numer. Math.**77**(1997), 1–34. - J. F. Blowey and C. M. Elliott,
*The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis*, European J. Appl. Math.**2**(1991), no. 3, 233–280. MR**1123143**, DOI 10.1017/S095679250000053X - J. F. Blowey and C. M. Elliott,
*The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical analysis*, European J. Appl. Math.**3**(1992), no. 2, 147–179. MR**1166255**, DOI 10.1017/S0956792500000759 - J. W. Cahn, C. M. Elliott, and A. Novick-Cohen,
*The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature*, European J. Appl. Math.**7**(1996), no. 3, 287–301. MR**1401172**, DOI 10.1017/S0956792500002369 - J.W. Cahn and J.E. Hilliard,
*Spinodal decomposition: A reprise*, Acta Metall.**19**(1971), 151–161. - J.F. Cialvaldini,
*Analyse numérique d’un problème de Stefan à deux phases par une méthode d’elements finis*, SIAM J. Numer. Anal.**12**(1975), 464–487. - M. I. M. Copetti and C. M. Elliott,
*Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy*, Numer. Math.**63**(1992), no. 1, 39–65. MR**1182511**, DOI 10.1007/BF01385847 - Ha Dang,
*Stability and boundary layer properties of Cahn-Hilliard equations*, Ph.D. Thesis, University of Utah (1995). - C. M. Elliott,
*Error analysis of the enthalpy method for the Stefan problem*, IMA J. Numer. Anal.**7**(1987), no. 1, 61–71. MR**967835**, DOI 10.1093/imanum/7.1.61 - Charles M. Elliott and Harald Garcke,
*On the Cahn-Hilliard equation with degenerate mobility*, SIAM J. Math. Anal.**27**(1996), no. 2, 404–423. MR**1377481**, DOI 10.1137/S0036141094267662 - C.M. Elliott and H. Garcke,
*Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix*, Physica D**109**(1997) pp. 242–256. - Charles M. Elliott and Stig Larsson,
*A finite element model for the time-dependent Joule heating problem*, Math. Comp.**64**(1995), no. 212, 1433–1453. MR**1308451**, DOI 10.1090/S0025-5718-1995-1308451-4 - C.M. Elliott and S. Luckhaus,
*A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy*. IMA, University of Minnesota, Preprint 887 (1991). - Jing Xue Yin,
*On the existence of nonnegative continuous solutions of the Cahn-Hilliard equation*, J. Differential Equations**97**(1992), no. 2, 310–327. MR**1167537**, DOI 10.1016/0022-0396(92)90075-X - J.-L. Lions,
*Quelques méthodes de résolution des problèmes aux limites non linéaires*, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR**0259693** - R.H. Nochetto,
*Finite element methods for parabolic free boundary problems*, in Advances in numerical analysis vol 1, (W. Light ed.), O.U.P. (1991), pp. 34–95.

## Additional Information

**John W. Barrett**- Affiliation: Department of Mathematics, Imperial College, London SW7 2BZ, U.K.
- MR Author ID: 31635
- Email: j.barrett@ic.ac.uk
**James F. Blowey**- Affiliation: Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, U.K.
- Email: j.f.blowey@durham.ac.uk
- Received by editor(s): July 16, 1996
- Received by editor(s) in revised form: September 16, 1997
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp.
**68**(1999), 487-517 - MSC (1991): Primary 65M60, 65M15, 35K55, 35K35, 82C26
- DOI: https://doi.org/10.1090/S0025-5718-99-01015-7
- MathSciNet review: 1609678