Multigrid methods for the computation of singular solutions and stress intensity factors I: Corner singularities
HTML articles powered by AMS MathViewer
- by Susanne C. Brenner PDF
- Math. Comp. 68 (1999), 559-583 Request permission
Abstract:
We consider the Poisson equation $-\Delta u=f$ with homogeneous Dirichlet boundary condition on a two-dimensional polygonal domain $\Omega$ with re-entrant angles. A multigrid method for the computation of singular solutions and stress intensity factors using piecewise linear functions is analyzed. When $f\in L^{2}(\Omega )$, the rate of convergence to the singular solution in the energy norm is shown to be ${\mathcal {O}}(h)$, and the rate of convergence to the stress intensity factors is shown to be ${\mathcal {O}}(h^{1+(\pi /\omega )-\epsilon })$, where $\omega$ is the largest re-entrant angle of the domain and $\epsilon >0$ can be arbitrarily small. The cost of the algorithm is ${\mathcal {O}}(h^{-2})$. When $f\in H^{1}(\Omega )$, the algorithm can be modified so that the convergence rate to the stress intensity factors is ${\mathcal {O}}(h^{2-\epsilon })$. In this case the maximum error of the multigrid solution over the vertices of the triangulation is shown to be ${\mathcal {O}}(h^{2-\epsilon })$.References
- Ivo Babuška, Finite element method for domains with corners, Computing (Arch. Elektron. Rechnen) 6 (1970), 264–273 (English, with German summary). MR 293858, DOI 10.1007/bf02238811
- I. Babuška, R. B. Kellogg, and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements, Numer. Math. 33 (1979), no. 4, 447–471. MR 553353, DOI 10.1007/BF01399326
- I. Babuška and A. Miller, The post-processing approach in the finite element method - part 2: The calculation of stress intensity factors, Int. J. Numer. Methods Engrg. 20 (1984), 1111–1129.
- Guan Chu Hu and Jian Kang Tang, An error bound for symmetric successive overrelaxation (SSOR) method, J. Hangzhou Univ. Natur. Sci. Ed. 13 (1986), no. 1, 12–20 (English, with Chinese summary). MR 820365
- Randolph E. Bank and Todd Dupont, An optimal order process for solving finite element equations, Math. Comp. 36 (1981), no. 153, 35–51. MR 595040, DOI 10.1090/S0025-5718-1981-0595040-2
- M. Š. Birman and G. E. Skvorcov, On square summability of highest derivatives of the solution of the Dirichlet problem in a domain with piecewise smooth boundary, Izv. Vysš. Učebn. Zaved. Matematika 1962 (1962), no. 5 (30), 11–21 (Russian). MR 0145196
- H. Blum and M. Dobrowolski, On finite element methods for elliptic equations on domains with corners, Computing 28 (1982), no. 1, 53–63 (English, with German summary). MR 645969, DOI 10.1007/BF02237995
- Maryse Bourlard, Monique Dauge, Mbaro-Saman Lubuma, and Serge Nicaise, Coefficients of the singularities for elliptic boundary value problems on domains with conical points. III. Finite element methods on polygonal domains, SIAM J. Numer. Anal. 29 (1992), no. 1, 136–155. MR 1149089, DOI 10.1137/0729009
- D. Braess and W. Hackbusch, A new convergence proof for the multigrid method including the $V$-cycle, SIAM J. Numer. Anal. 20 (1983), no. 5, 967–975. MR 714691, DOI 10.1137/0720066
- James H. Bramble, Multigrid methods, Pitman Research Notes in Mathematics Series, vol. 294, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1247694
- J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7 (1970), 112–124. MR 263214, DOI 10.1137/0707006
- James H. Bramble and Joseph E. Pasciak, The analysis of smoothers for multigrid algorithms, Math. Comp. 58 (1992), no. 198, 467–488. MR 1122058, DOI 10.1090/S0025-5718-1992-1122058-0
- James H. Bramble and Joseph E. Pasciak, New estimates for multilevel algorithms including the $V$-cycle, Math. Comp. 60 (1993), no. 202, 447–471. MR 1176705, DOI 10.1090/S0025-5718-1993-1176705-9
- James H. Bramble and Joseph E. Pasciak, Uniform convergence estimates for multigrid $V$-cycle algorithms with less than full elliptic regularity, Domain decomposition methods in science and engineering (Como, 1992) Contemp. Math., vol. 157, Amer. Math. Soc., Providence, RI, 1994, pp. 17–26. MR 1262601, DOI 10.1090/conm/157/01401
- S.C. Brenner, Overcoming corner singularities by multigrid methods, SIAM J. Numer. Anal (to appear).
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- S.C. Brenner and L.-Y. Sung, Multigrid methods for the computation of singular solutions and stress intensity factors II: crack singularities, BIT 37 (1997), 623–643.
- Chuan Miao Chen, Optimal points of the stresses for triangular linear elements, Numer. Math. J. Chinese Univ. 2 (1980), no. 2, 12–20 (Chinese, with English summary). MR 619174
- C. Chen and Y. Huang, High Accuracy Theory of Finite Element Methods, Hunan Science and Technology Publishing House, Changsha, 1995 (in Chinese).
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 9 (1975), no. R-2, 77–84 (English, with Loose French summary). MR 0400739
- Martin Costabel and Monique Dauge, Computation of corner singularities in linear elasticity, Boundary value problems and integral equations in nonsmooth domains (Luminy, 1993) Lecture Notes in Pure and Appl. Math., vol. 167, Dekker, New York, 1995, pp. 59–68. MR 1301341
- Monique Dauge, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR 961439, DOI 10.1007/BFb0086682
- Monique Dauge, Mbaro-Saman Lubuma, and Serge Nicaise, Coefficients des singularités pour le problème de Dirichlet sur un polygone, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 16, 483–486 (French, with English summary). MR 894574
- M. Dobrowolski, Numerical Approximation of Elliptic Interface and Corner Problems, Habilitationschrift, Bonn, 1981.
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 2nd ed., Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1989. MR 1002570
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- P. Grisvard, Problèmes aux limites dans les polygones. Mode d’emploi, EDF Bull. Direction Études Rech. Sér. C Math. Inform. 1 (1986), 3, 21–59 (French). MR 840970
- P. Grisvard, Singularités en elasticité, Arch. Rational Mech. Anal. 107 (1989), no. 2, 157–180 (French, with English summary). MR 996909, DOI 10.1007/BF00286498
- P. Grisvard, Singularities in boundary value problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22, Masson, Paris; Springer-Verlag, Berlin, 1992. MR 1173209
- Wolfgang Hackbusch, Multigrid methods and applications, Springer Series in Computational Mathematics, vol. 4, Springer-Verlag, Berlin, 1985. MR 814495, DOI 10.1007/978-3-662-02427-0
- V. A. Kondrat′ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209–292 (Russian). MR 0226187
- D. Leguillon and E. Sánchez-Palencia, Computation of singular solutions in elliptic problems and elasticity, John Wiley & Sons, Ltd., Chichester; Masson, Paris, 1987. MR 995254
- Nick Levine, Superconvergent recovery of the gradient from piecewise linear finite element approximations, IMA J. Numer. Anal. 5 (1985), no. 4, 407–427. MR 816065, DOI 10.1093/imanum/5.4.407
- Q. Lin and N. Yan, The Construction and Analysis of Highly Effective Finite Elements, Hebei University Press, Baoding, 1996 (in Chinese).
- L. C. Young, On an inequality of Marcel Riesz, Ann. of Math. (2) 40 (1939), 567–574. MR 39, DOI 10.2307/1968941
- S. F. McCormick, Multigrid methods for variational problems: further results, SIAM J. Numer. Anal. 21 (1984), no. 2, 255–263. MR 736329, DOI 10.1137/0721018
- Mo Mu and Hong Ci Huang, Extrapolation acceleration and $\textrm {MG}$ methods for calculating stress intensity factors on re-entrant domains, Math. Numer. Sinica 12 (1990), no. 1, 54–60 (Chinese, with English summary); English transl., Chinese J. Numer. Math. Appl. 12 (1990), no. 2, 34–41. MR 1056645
- Sergey A. Nazarov and Boris A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994. MR 1283387, DOI 10.1515/9783110848915.525
- Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 373325, DOI 10.1090/S0025-5718-1974-0373325-9
- L. A. Oganesjan and L. A. Ruhovec, An investigation of the rate of convergence of variation-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary, Ž. Vyčisl. Mat i Mat. Fiz. 9 (1969), 1102–1120 (Russian). MR 295599
- P. Papadakis, Computational Aspects of the Determination of the Stress Intensity Factors for Two Dimensional Elasticity, Ph.D. Dissertation, University of Maryland, College Park, 1989.
- Panagiotis J. Papadakis and Ivo Babuška, A numerical procedure for the determination of certain quantities related to the stress intensity factors in two-dimensional elasticity, Comput. Methods Appl. Mech. Engrg. 122 (1995), no. 1-2, 69–92. MR 1327813, DOI 10.1016/0045-7825(94)00748-C
- Rolf Rannacher and Ridgway Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), no. 158, 437–445. MR 645661, DOI 10.1090/S0025-5718-1982-0645661-4
- Ulrich Rüde, Mathematical and computational techniques for multilevel adaptive methods, Frontiers in Applied Mathematics, vol. 13, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1993. MR 1243183, DOI 10.1137/1.9781611970968
- Albert H. Schatz, Vidar Thomée, and Wolfgang L. Wendland, Mathematical theory of finite and boundary element methods, DMV Seminar, vol. 15, Birkhäuser Verlag, Basel, 1990. MR 1116555, DOI 10.1007/978-3-0348-7630-8
- Ridgway Scott, Optimal $L^{\infty }$ estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681–697. MR 436617, DOI 10.1090/S0025-5718-1976-0436617-2
- J. N. Lyness and Ronald Cools, A survey of numerical cubature over triangles, Mathematics of Computation 1943–1993: a half-century of computational mathematics (Vancouver, BC, 1993) Proc. Sympos. Appl. Math., vol. 48, Amer. Math. Soc., Providence, RI, 1994, pp. 127–150. MR 1314845, DOI 10.1090/psapm/048/1314845
- B.A. Szabó and I. Babuška, Computation of the amplitude of stress singular terms for cracks and reentrant corners, Fracture Mechanics: Nineteenth Symposium, ASTM STP 969 (T.A. Cruse, ed.), American Society for Testing and Materials, Philadelphia, 1988, pp. 101–124.
- Dunham Jackson, A class of orthogonal functions on plane curves, Ann. of Math. (2) 40 (1939), 521–532. MR 80, DOI 10.2307/1968936
- D. Vasilopoulos, On the determination of higher order terms of singular elastic stress fields near corners, Numer. Math. 53 (1988), no. 1-2, 51–95. MR 946369, DOI 10.1007/BF01395878
- Lars B. Wahlbin, On the sharpness of certain local estimates for $\r H{}^{1}$ projections into finite element spaces: influence of a re-entrant corner, Math. Comp. 42 (1984), no. 165, 1–8. MR 725981, DOI 10.1090/S0025-5718-1984-0725981-7
- P. G. Ciarlet and J.-L. Lions (eds.), Handbook of numerical analysis. Vol. II, Handbook of Numerical Analysis, II, North-Holland, Amsterdam, 1991. Finite element methods. Part 1. MR 1115235
- —, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics 1605, Springer-Verlag, Berlin, 1995.
- Z. Yosibash, Numerical Analysis of Singularities and First Derivatives for Elliptic Boundary Value Problems in Two Dimensions, D.Sc. Dissertation, Sever Institute of Technology, Washington University, St. Louis, 1994.
- Zohar Yosibash and Barna Szabó, Numerical analysis of singularities in two dimensions. I. Computation of eigenpairs, Internat. J. Numer. Methods Engrg. 38 (1995), no. 12, 2055–2082. MR 1342641, DOI 10.1002/nme.1620381207
- Harry Yserentant, The convergence of multilevel methods for solving finite-element equations in the presence of singularities, Math. Comp. 47 (1986), no. 176, 399–409. MR 856693, DOI 10.1090/S0025-5718-1986-0856693-9
- Shangyou Zhang, Optimal-order nonnested multigrid methods for solving finite element equations. I. On quasi-uniform meshes, Math. Comp. 55 (1990), no. 191, 23–36. MR 1023054, DOI 10.1090/S0025-5718-1990-1023054-2
- Shangyou Zhang, Optimal-order nonnested multigrid methods for solving finite element equations. II. On nonquasiuniform meshes, Math. Comp. 55 (1990), no. 192, 439–450. MR 1035947, DOI 10.1090/S0025-5718-1990-1035947-0
- Shangyou Zhang, Optimal-order nonnested multigrid methods for solving finite element equations. III. On degenerate meshes, Math. Comp. 64 (1995), no. 209, 23–49. MR 1257583, DOI 10.1090/S0025-5718-1995-1257583-8
- Chao Ding Zhu and Qun Lin, Youxianyuan chaoshoulian lilun, Hunan Science and Technology Publishing House, Changsha, 1989 (Chinese). MR 1200243
Additional Information
- Susanne C. Brenner
- Affiliation: Department of Mathematics, University of South Carolina, Columbia, SC 29208
- Email: brenner@math.sc.edu
- Received by editor(s): July 2, 1996
- Additional Notes: This work was supported in part by the National Science Foundation under Grant Nos. DMS-94-96275 and DMS-96-00133.
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp. 68 (1999), 559-583
- MSC (1991): Primary 65N55, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-99-01017-0
- MathSciNet review: 1609670