MULTIGRID METHODS FOR THE COMPUTATION OF SINGULAR SOLUTIONS AND STRESS INTENSITY FACTORS I: CORNER SINGULARITIES

SUSANNE C. BRENNER

ABSTRACT. We consider the Poisson equation \(-\Delta u = f\) with homogeneous Dirichlet boundary condition on a two-dimensional polygonal domain \(\Omega\) with re-entrant angles. A multigrid method for the computation of singular solutions and stress intensity factors using piecewise linear functions is analyzed. When \(f \in L^2(\Omega)\), the rate of convergence to the singular solution in the energy norm is shown to be \(O(h)\), and the rate of convergence to the stress intensity factors is shown to be \(O(h^{1+(\pi/\omega)-\epsilon})\), where \(\omega\) is the largest re-entrant angle of the domain and \(\epsilon > 0\) can be arbitrarily small. The cost of the algorithm is \(O(h^{-2})\). When \(f \in H^1(\Omega)\), the algorithm can be modified so that the convergence rate to the stress intensity factors is \(O(h^{2-\epsilon})\). In this case the maximum error of the multigrid solution over the vertices of the triangulation is shown to be \(O(h^{2-\epsilon})\).

1. Introduction

Let \(\Omega\) be a bounded polygonal domain in \(\mathbb{R}^2\) with at least one re-entrant angle. Consider the Poisson equation with homogeneous Dirichlet boundary condition:

\[
\begin{align*}
-\Delta u &= f \quad \text{in} \quad \Omega, \\
 u &= 0 \quad \text{on} \quad \partial \Omega,
\end{align*}
\]

where \(f \in L^2(\Omega)\).

Let \(\omega_1, \ldots, \omega_J\) be the internal angles of \(\Omega\) which satisfy \(\pi < \omega_j < 2\pi\) and let \(p_j\) be the corresponding vertices. It is well known (cf. [23], [27], [32], [39]) that the unique solution \(u \in H^1_0(\Omega)\) of (1.1) has the representation

\[
(1.2) \quad u = \sum_{j=1}^J \kappa_j s_j + w,
\]

where \(w \in H^2(\Omega) \cap H^1_0(\Omega)\) and the singular functions \(s_j\) are defined as follows. Let polar coordinates \((r_j, \theta_j)\) be chosen at the vertex \(p_j\) so that the internal angle \(\omega_j\) is spanned by the two half lines \(\theta_j = 0\) and \(\theta_j = \omega_j\). Then we have

\[
(1.3) \quad s_j(r_j, \theta_j) = \phi_j(r_j)r_j^{\pi/\omega_j} \sin\left((\pi/\omega_j)\theta_j\right),
\]
where \(\phi_j \) \((j = 1, \ldots, J)\) are smooth cut-off functions which equal 1 identically in a neighborhood of 0, and the supports of the \(\phi_j \)'s are small enough so that the singular functions \(s_j \) vanish identically on \(\partial \Omega \). Moreover, the following regularity estimate holds:

\[
\| w \|_{H^2(\Omega)} + \sum_{j=1}^{J} | \kappa_j | \lesssim \| f \|_{L^2(\Omega)}.
\]

(1.4)

(Throughout this paper the statement \(F \lesssim G \) means that \(F \) is bounded by \(G \) multiplied by a constant which is independent of the mesh size and grid level. In the statement \(F \lesssim \epsilon G \), the constant can depend on \(\epsilon \).) The coefficient \(\kappa_j \) can be expressed in terms of \(u \) by the following extraction formula:

\[
\kappa_j = \frac{1}{\pi} \left\{ \int_{\Omega} f s_{-j} \, dx + \int_{\Omega} u \Delta s_{-j} \, dx \right\},
\]

(1.5)

where the dual singular function \(s_{-j} \) is defined in the polar coordinate system \((r_j, \theta_j)\) as

\[
s_{-j}(r_j, \theta_j) = \phi_j(r_j)r_j^{-\pi/\omega_j} \sin \left(\left(\frac{\pi}{\omega_j} \right) \theta_j \right)
\]

(cf. [6], [7], [3], [27], [24], [39]).

Formulas similar to (1.2) and (1.5) also hold for the solution of two-dimensional elasticity problems (cf. [49], [28], [29], [30], [33]). In that context, the coefficients \(\kappa_j \) are known as stress intensity factors, and we will adopt that terminology here. These quantities play a particularly important role in linear fracture mechanics.

In view of (1.5), it is natural to compute an approximation \(\kappa_{j,h} \) to \(\kappa_j \) by

\[
\kappa_{j,h} = \frac{1}{\pi} \left\{ \int_{\Omega} f s_{-j} \, dx + \int_{\Omega} u_h \Delta s_{-j} \, dx \right\},
\]

(1.7)

where \(u_h \) is a finite element approximation of \(u \). The accuracy of \(\kappa_{j,h} \) computed by (1.7) depends on the accuracy of \(u_h \), which ultimately depends on the regularity of \(u \).

It is known (cf. [27]) that the singular functions \(s_j \in H^r(\Omega) \) for all \(r < 1 + (\pi/\omega_j) \) and \(s_j \notin H^{1+(\pi/\omega_j)}(\Omega) \). It follows from (1.2) that the best one can say about the regularity of \(u \) is

\[
u \in H^r(\Omega) \quad \forall \ r < 1 + \frac{\pi}{\omega},
\]

(1.8)

where

\[
\omega = \max(\omega_1, \omega_2, \ldots, \omega_J).
\]

(1.9)

Suppose \(V_h \subseteq H^1_0(\Omega) \) is the piecewise linear finite element space associated with a quasi-uniform triangulation \(T_h \), \(h = \max_{T \in T_h} \text{diam} \, T \), and \(\tilde{u}_h \in V_h \) satisfies

\[
\int_{\Omega} \nabla \tilde{u}_h \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \quad \forall \ v \in V_h.
\]

(1.10)

It follows from (1.8) that for any \(\epsilon > 0 \) we have

\[
| u - \tilde{u}_h |_{H^2(\Omega)} \lesssim \epsilon \left(\frac{\pi}{\omega} \right)^{-\epsilon} \| f \|_{L^2(\Omega)},
\]

(1.11)

and

\[
\| u - \tilde{u}_h \|_{L^2(\Omega)} \lesssim \epsilon \left(\frac{\pi}{\omega} \right)^{-\epsilon} \| f \|_{L^2(\Omega)}.
\]

(1.12)
If $\tilde{\kappa}_{j,h}$ is computed by (1.7) using \tilde{u}_h, then (1.5), (1.7) and (1.12) imply that

\begin{equation}
|\kappa_j - \tilde{\kappa}_{j,h}| \leq \frac{1}{\pi} \int_{\Omega} |(u - \tilde{u}_h) \Delta s_{-j}| \, dx \\
\lesssim \|u - \tilde{u}_h\|_{L^2(\Omega)} \\
\lesssim \epsilon^2 (\pi/\omega)^{-\epsilon} \|f\|_{L^2(\Omega)}.
\end{equation}

Note that $\Delta s_{-j} = 0$ near p_j, so the integration in (1.13) is only over a domain away from p_j, where s_{-j} is a smooth function. Also, the estimate (1.13) cannot be improved due to the pollution effect of the corner singularity (cf. [40], [52], [53]). Thus the lack of regularity adversely affects the accuracy of the finite element solution \tilde{u}_h and hence $\tilde{\kappa}_{j,h}$.

In this paper, we develop, on quasi-uniform grids, a multigrid method for the computation of the singular solution u and the stress intensity factors κ_j that obtains better estimates than (1.11)–(1.13). The basic idea is that (1.1) and (1.2) imply that w, the regular part of u, is the solution of

\begin{equation}
-\Delta w = f + \sum_{j=1}^{J} \kappa_j \Delta s_j \quad \text{in } \Omega,
\end{equation}

\begin{equation}
w = 0 \quad \text{on } \partial \Omega.
\end{equation}

If the κ_j's were known, we could solve (1.14) using piecewise linear finite elements, and the solution would have a good convergence rate since $w \in H^2(\Omega)$. Unfortunately, the κ_j's are unknown, so we instead apply the finite element method on the kth level to the following variational problem:

Find $\hat{w}_k \in H^1_0(\Omega)$ such that

\begin{equation}
\int_{\Omega} \nabla \hat{w}_k \cdot \nabla v \, dx = \int_{\Omega} \left(f + \sum_{j=1}^{J} \kappa_{j,k} \Delta s_j \right) v \, dx \quad \forall v \in H^1_0(\Omega),
\end{equation}

where the approximate stress intensity factors $\kappa_{j,k}$ are computed by the extraction formula (1.5) using the approximate solution u_{k-1} obtained in the $(k-1)^{st}$ level, i.e.,

\begin{equation}
\kappa_{j,k} = \frac{1}{\pi} \left\{ \int_{\Omega} f s_{-j} \, dx + \int_{\Omega} u_{k-1} \Delta s_{-j} \, dx \right\}.
\end{equation}

We obtain, on the kth level, a piecewise linear approximate solution w_k to \hat{w}_k by a standard multigrid algorithm. The approximate solution u_k to u is then defined to be

\begin{equation}
u_k = \sum_{j=1}^{J} \kappa_{j,k} s_j + w_k.
\end{equation}

In other words, we have a full multigrid algorithm where the right-hand side of the finite element equation changes from level to level (cf. (1.15)) and we are really computing the regular part w of the solution. The improvement in the convergence rate is possible because w has better regularity than u. We will show
(cf. Theorem 4.1) that
\begin{align}
|u - u_k|_{H^1(\Omega)} & \lesssim h_k \|f\|_{L^2(\Omega)}, \\
\sum_{j=1}^J |\kappa_j - \kappa_{j,k}| & \lesssim h_k^{1+\pi/\omega-\epsilon} \|f\|_{L^2(\Omega)}.
\end{align}

The estimate (1.18) is optimal for the piecewise linear finite element space, and the estimate (1.19) improves the estimate in (1.13). The computational cost of our multigrid method is proportional to the dimension of \(V_h\), i.e., is of order \(C \epsilon h^{-2}\).

We also consider a second multigrid method in the case where \(f \in H^1(\Omega)\).

Let \(\omega_1, \ldots, \omega_N\) be the internal angles of \(\Omega\) which satisfy \(\pi/2 < \omega_j < 2\pi\). When \(f \in H^1(\Omega)\), the solution \(u\) of (1.1) can be written as (cf. \([27]\), [23])
\begin{align}
\sum_{j=1}^J \sum_{\ell \in \mathcal{L}_j} \kappa_{j,\ell} s_{j,\ell} + w,
\end{align}

where \(w \in H^{3-\epsilon}(\Omega) \cap H^1_0(\Omega)\) for any \(\epsilon > 0\),
\begin{align}
\mathcal{L}_j = \{\ell \in \mathbb{N} : \ell(\pi/\omega_j) < 2\},
\end{align}
and in appropriate polar coordinates,
\begin{align}
s_{j,\ell}(r_j, \theta_j) = \phi_j(r_j) r_j^{\ell(\pi/\omega_j)} \sin(\ell(\pi/\omega_j) \theta_j).
\end{align}
Moreover, the following regularity estimates hold:
\begin{align}
\sum_{j=1}^J \sum_{\ell \in \mathcal{L}_j} |\kappa_{j,\ell}| & \lesssim \|f\|_{H^1(\Omega)} \quad \text{and} \quad \|w\|_{H^{3-\epsilon}(\Omega)} \lesssim \epsilon \|f\|_{H^1(\Omega)}.
\end{align}
The coefficient \(\kappa_{j,\ell}\) can be expressed in terms of \(u\) by
\begin{align}
\kappa_{j,\ell} = \frac{1}{\ell \pi} \left\{ \int_\Omega f s_{j,-\ell} \, dx + \int_\Omega u \Delta s_{j,-\ell} \, dx \right\},
\end{align}
where the dual singular function \(s_{j,-\ell}\) is defined by
\begin{align}
s_{j,-\ell}(r_j, \theta_j) = \phi_j(r_j) r_j^{\ell(\pi/\omega_j)} \sin(\ell(\pi/\omega_j) \theta_j).
\end{align}

Using similar ideas and taking advantage of a superconvergence result for linear finite elements, we develop a multigrid method that produces, at a cost of \(C \epsilon h^{-2}\), an approximate solution \(u_k\) in the form
\begin{align}
u_k = \sum_{j=1}^N \sum_{\ell \in \mathcal{L}_j} \kappa_{j,\ell,k} s_{j,\ell} + w_k,
\end{align}
where \(w_k\) is a piecewise linear function on the \(k\)th level triangulation, and we show that (cf. Theorem 5.4)
\begin{align}
|u - u_k|_{H^1(\Omega)} & \lesssim h_k \|f\|_{H^1(\Omega)}, \\
\sum_{j=1}^J \sum_{\ell \in \mathcal{L}} |\kappa_{j,\ell} - \kappa_{j,\ell,k}| & \lesssim h_k^{2-\epsilon} \|f\|_{H^1(\Omega)}.
\end{align}
As a corollary (cf. Corollary 5.6), we obtain
\[
\max_p |u(p) - u_k(p)| \lesssim h_k^{2-\tau} \|f\|_{H^1(\Omega)},
\]
where the maximum is taken over all the vertices \(p\) of the \(k\)th level triangulation.

Corner singularities can also be overcome by the method of local refinement (cf. [1], [2]). Using this method, the number of degrees of freedom is of order \(O(h^{-2})\) and the error of the computed stress intensity factor is of order \(O(h^2)\). This method also has the advantage that it does not require the knowledge of the exact forms of the singular functions. However, it is more difficult in this approach to use multilevel techniques (cf. [57], [58], [59], [60], [45]).

Another method for the computation of the stress intensity factors is the dual singular function method (DSFM) (cf. [25], [7], [8]) where extraction formulas are defined in Section 2 and the convergence analyses are carried out in Sections 3, 4, and 5. The results of numerical experiments are presented in Section 6. Section 7 contains some concluding remarks.

2. The multigrid algorithms

Let \(\{T_k\}, k \geq 1\), be a family of triangulations of \(\Omega\), where \(T_{k+1}\) is obtained from \(T_k\) by regular subdivision, i.e., by connecting the midpoints of the edges of the triangles in \(T_k\), and define \(h_k = \max_{T \in T_k} \text{diam} T\). Let \(V_k = \{v \in H^1_0(\Omega) : v|_T \in P_1(T) \quad \forall T \in T_k\}\) be the piecewise linear finite element space associated with \(T_k\).

We define the discrete inner product \((\cdot, \cdot)_k\) by
\[
(v_1, v_2)_k = h_k^2 \sum p \in T_k v_1(p)v_2(p) \quad \forall v_1, v_2 \in V_k,
\]
where the summation is taken over all the vertices \(p\) of \(T_k\). The operators \(A_k : V_k \rightarrow V_k\) and \(I_k^{-1} : V_k \rightarrow V_{k-1}\) are defined by
\[
(A_k v_1, v_2)_k = \int_{\Omega} \nabla v_1 \cdot \nabla v_2 \, dx \quad \forall v_1, v_2 \in V_k,
\]
and
\[
(I_k^{-1} v, w)_{k-1} = (v, w)_k \quad \forall v \in V_k, w \in V_{k-1}(\subseteq V_k).
\]
Clearly, \(A_k\) is symmetric positive definite with respect to \((\cdot, \cdot)_k\). Since \((v, v)_k\) is equivalent to \(\|v\|_{L^2(\Omega)}\) for \(v \in V_k\), it follows from (2.2) and a standard inverse estimate (cf. [20], [16]) that the spectral radius \(\rho(A_k)\) satisfies \(\rho(A_k) \lesssim h_k^{-2}\).
For the convergence analysis in Section 3, we also need the Ritz projection operator $P_k : H^1_0(\Omega) \to V_k$ defined by
\begin{equation}
\int_\Omega \nabla (\zeta - P_k \zeta) \cdot \nabla v \, dx = 0 \quad \forall \zeta \in H^1_0(\Omega), v \in V_k.
\end{equation}
It is easy to see that
\begin{equation}
I_k^{-1} - A_k^{-1} P_k = A_k^{-1}.
\end{equation}

The following is the standard one-sided kth-level multigrid iteration: For $p = 1$, this is the usual $V(m, 0)$ cycle, and for $p = 2$, this is the usual $W(m, 0)$ cycle.

The kth level iteration. The kth level iteration with initial guess z_0 yields $MG(k, z_0, g)$ as an approximate solution to the equation
\begin{equation}
A_k z = g.
\end{equation}
For $k = 1$, $MG(1, z_0, g)$ is the solution obtained from an exact solver. In other words,
\begin{equation}
MG(1, z_0, g) = A_1^{-1} g.
\end{equation}
For $k > 1$, there are two steps.

Smoothing Step Let $z_l \in V_k$ ($1 \leq l \leq m$) be defined recursively by the equations
\begin{equation}
z_l = z_{l-1} + \frac{1}{\Lambda_k} (g - A_k z_{l-1}), \quad 1 \leq l \leq m,
\end{equation}
where m is a positive integer independent of k, and $\Lambda_k := Ch_k^{-2}$ dominates the spectral radius of A_k.

Correction Step Let $\overline{g} = I_k^{-1} (g - A_k z_m)$ and $q_i \in V_{k-1}$ ($0 \leq i \leq p, p = 1$ or 2) be defined recursively by
\begin{equation}
q_0 = 0 \quad \text{and} \quad q_i = MG(k - 1, q_{i-1}, \overline{g}), 1 \leq i \leq p.
\end{equation}
The output is obtained by combining the two steps:
\begin{equation}
MG(k, z_0, g) = z_m + q_p.
\end{equation}

Remark. We use Richardson relaxation in (2.8) to simplify the analysis in Section 3. Other smoothers (cf. [37], [31], [4], [36], [10], [12]) can of course be used.

Full multigrid algorithm I. When $f \in L^2(\Omega)$, we use a nested iteration (where each kth level iteration is applied n times) to compute $\kappa_{j,k} \in \mathbb{R}$ ($1 \leq j \leq J$) and $w_k \in V_k$ so that $\kappa_{j,k}$ is a good approximation of κ_j, and $u_k = \sum_{j=1}^J \kappa_{j,k} s_j + w_k$ is a good approximation of the solution u of (1.1) (cf. (1.2)).

The nested iteration. For $k = 1$,
\begin{equation}
w_1 = A_1^{-1} g_1,
\end{equation}
where $g_1 \in V_1$ is defined by
\begin{equation}
(g_1, v)_1 = \int_\Omega f v \, dx \quad \forall v \in V_1,
\end{equation}
and we set
\begin{equation}
\kappa_{j,1} = 0 \quad \text{for} \quad 1 \leq j \leq J,
\end{equation}
\begin{equation}
u_1 = w_1.
\end{equation}
For $k \geq 2$, the numbers $\kappa_{j,k} \in \mathbb{R}$ are computed by

$$
\kappa_{j,k} = \frac{1}{\pi} \left\{ \int_{\Omega} f s_{-j} \, dx + \int_{\Omega} u_{k-1} \Delta s_{-j} \, dx \right\} \quad \text{for } 1 \leq j \leq J,
$$

and $w_k \in V_k$ is obtained recursively by

$$
w_{k,0} = w_{k-1},
$$

$$
w_{k,l} = MG(k, w_{k,l-1}, g_k) \quad \text{for } 1 \leq l \leq n,
$$

$$
w_k = w_{k,n},
$$

where n is a positive integer independent of k, and $g_k \in V_k$ is defined by

$$
(g_k, v)_k = \int_{\Omega} \left(f + \sum_{j=1}^{J} \kappa_{j,k} \Delta s_j \right) v \, dx \quad \forall \, v \in V_k.
$$

We then define u_k by

$$
u_k = \sum_{j=1}^{J} \kappa_{j,k} s_j + w_k.
$$

Full multigrid algorithm II. When $f \in H^1(\Omega)$, we use a nested iteration (where each kth level iteration is applied n times) to compute $\kappa_{j,\ell,k} \in \mathbb{R}$ ($1 \leq j \leq N$, $\ell \in L_j$) and $w_k \in V_k$ so that $\kappa_{j,\ell,k}$ is a good approximation of $\kappa_{j,\ell}$, and $u_k = \sum_{j=1}^{N} \sum_{\ell \in L_j} \kappa_{j,\ell,k} s_j + w_k$ is a good approximation of the solution u of (1.1) (cf. (1.20)).

The nested iteration

For $k = 1$,

$$
w_1 = A_1^{-1} g_1,
$$

where $g_1 \in V_1$ is defined by

$$
(g_1, v)_1 = \int_{\Omega} f v \, dx \quad \forall \, v \in V_1,
$$

and we set

$$
\kappa_{j,\ell,1} = 0 \quad \text{for } 1 \leq j \leq N, \, \ell \in L_j,
$$

$$
u_1 = w_1.
$$

For $k \geq 2$, the numbers $\kappa_{j,\ell,k} \in \mathbb{R}$ are computed by

$$
\kappa_{j,\ell,k} = \frac{1}{\ell \pi} \left\{ \int_{\Omega} f s_{j,-\ell} \, dx + \int_{\Omega} u_{k-1-\ell \Delta s_{j,-\ell}} \, dx \right\} \quad \text{for } 1 \leq j \leq N, \, \ell \in L_j,
$$

and $w_k \in V_k$ is obtained recursively by

$$
w_{k,0} = I_{k-1} w_{k-1},
$$

$$
w_{k,l} = MG(k, w_{k,l-1}, g_k) \quad \text{for } 1 \leq l \leq n,
$$

$$
w_k = w_{k,n},
$$

where n is a positive integer independent of k, and $g_k \in V_k$ is defined by

$$
(g_k, v)_k = \int_{\Omega} \left(f + \sum_{j=1}^{N} \sum_{\ell \in L_j} \kappa_{j,\ell,k} \Delta s_{j,\ell} \right) v \, dx \quad \forall \, v \in V_k.
$$
We then define u_k by

\begin{equation}
(2.26) \quad u_k = \sum_{j=1}^{N} \sum_{\ell \in E_j} s_{j, \ell, k} s_{j, \ell} + w_k.
\end{equation}

The intergrid transfer operator $I_{k-1}^{k} : V_{k-1} \rightarrow V_k$ in (2.24) is defined as follows. We assume that T_1 is also obtained by connecting the midpoints of a coarser triangulation T_0. Let $Q_k \subset H^1_0(\Omega)$ ($k = 0, 1, 2, \ldots$) be the quadratic Lagrange finite element space associated with T_k. Let $T_{k-2}^{k-1} : Q_{k-2} \rightarrow V_{k-1}$ and $T_k^{k-2} : Q_{k-2} \rightarrow V_k$ be the nodal interpolation operators. Since Q_{k-2} and V_{k-1} share the same nodal points, it is clear that T_{k-2}^{k-1} is an isomorphism from Q_{k-2} onto V_{k-1}. We define, for $k = 2, 3, \ldots$,

\begin{equation}
(2.27) \quad I_{k-1}^{k} = T_{k-2}^{k-1} \circ (T_{k-2}^{k-1})^{-1}.
\end{equation}

This more sophisticated intergrid transfer operator is needed to maintain a higher convergence rate for this full multigrid algorithm.

Remark. A standard argument (cf. [5]) shows that the costs for both full multigrid algorithms are proportional to $\dim V_k$.

3. **Contraction properties of the k^{th} level iteration**

We have the following result (cf. [9], [10], [13], [14]) for the convergence of the k^{th} level iteration in the energy norm.

Lemma 3.1. Let $p = 1$ (V-cycle) or 2 (W-cycle) and $m \geq 1$ in the k^{th} level iteration. Then there exists a $\delta < 1$, independent of k, such that

\begin{equation}
(3.1) \quad |z - MG(k, z_0, g)|_{H^1(\Omega)} \leq \delta |z - z_0|_{H^1(\Omega)}.
\end{equation}

Remark. The estimate (3.1) was obtained in [13] and [14] for the symmetric V-cycle algorithm. Since the finite element spaces V_k are conforming and nested, it also holds (cf. [37]) for the one-sided V-cycle and W-cycle algorithms described in Section 2. Moreover, the contraction number δ for the W-cycle algorithm can be made arbitrarily small by increasing the number of smoothing steps m (cf. [5]).

We also have the following convergence result for the k^{th} level iteration in the $H_{1/2}(\Omega)$ norm.

Lemma 3.2. Let $p = 2$ (W-cycle), $0 < \delta < 1$, $0 < \epsilon < \pi/\omega$ and $\alpha_\epsilon = 1 - (\pi/\omega) + \epsilon \neq 1/2$. If the number of smoothing steps m in the k^{th} level iteration is sufficiently large, then we have

\begin{equation}
(3.2) \quad \|z - MG(k, z_0, g)\|_{H^{1/2}(\Omega)} \leq \delta \|z - z_0\|_{H^{1/2}(\Omega)}.
\end{equation}

Proof. We follow the methodology in [5]. First we consider the two-grid algorithm where q_{p} in (2.10) is replaced by (cf. (2.5))

\begin{equation}
(3.3) \quad q = A_{k-1}^{-1} \bar{g} = A_{k-1}^{-1} I_{k-1}^{k-1} A_k (z - z_m) = P_{k-1} (z - z_m).
\end{equation}

Let $R_k : V_k \rightarrow V_k$ be defined by

\begin{equation}
(3.4) \quad R_k = I - \frac{1}{A_k} A_k.
\end{equation}
Then, by (2.8) and (3.4), we have
\begin{equation}
\begin{aligned}
z - z_m &= R_k^m(z - z_0).
\end{aligned}
\end{equation}

It follows from (3.3) and (3.5) that the error of the output \(\hat{z} = z_m + q \) of the two-grid method is given by
\begin{equation}
\begin{aligned}
z - \hat{z} &= z - z_m - q = (I - P_{k-1})(z - z_m) = (I - P_{k-1})R_k^m(z - z_0).
\end{aligned}
\end{equation}

For \(0 \leq s \leq 1 \), we define
\begin{equation}
\|v\|_s = \sqrt{(A_k^s v, v)_k} \quad \forall v \in V_k.
\end{equation}

We immediately have
\begin{equation}
\|v\|_1 \leq [\rho(A_k^{1-s})]^{1/2} \|v\|_s \lesssim h_k^{s-1} \|v\|_s \quad \forall v \in V_k, \ 0 \leq s \leq 1,
\end{equation}
and since \(\Lambda_k = Ch_k^{-2} \) dominates the spectral radius of \(A_k \),
\begin{equation}
\|R_k v\|_s \leq \|v\|_s \quad \forall v \in V_k, \ 0 \leq s \leq 1.
\end{equation}

The effect of the smoothing step is measured by the following smoothing property:
\begin{equation}
\|R_k^m v\|_1 = (A_k^m R_k^m v, R_k^m v)_k)^{1/2}
\end{equation}
\begin{equation}
\leq \Lambda_k^{s/2} \rho(A_k^{1-s} A_k^2 R_k^m v, v)_k^{1/2}
\end{equation}
\begin{equation}
\lesssim h_k^{s} \left(\sup_{0 \leq t \leq 1} t^{s}(1 - t)^{2m} \right)^{1/2} \|v\|_1
\end{equation}
\begin{equation}
\lesssim h_k^{s} m^{-s/2} \|v\|_1 \quad \forall v \in V_k, \ 0 \leq s \leq 1.
\end{equation}

The effect of the correction step is given by the following approximation property:
\begin{equation}
\|v - P_{k-1}v\|_{H^{s}(\Omega)} \lesssim \epsilon \ h_k^{s/2} \|v - P_{k-1}v\|_{H^{s}(\Omega)} \quad \forall v \in H^1_0(\Omega).
\end{equation}

We will establish (3.11) by a duality argument. Let \(\phi \in H^{-\alpha}(\Omega) \) and \(\zeta \in H^1_0(\Omega) \) satisfy
\begin{equation}
\int_{\Omega} \nabla \zeta \cdot \nabla v \ dx = \phi(v) \quad \forall v \in H^1_0(\Omega).
\end{equation}

It is well known (cf. [23]) that \(\zeta \in H^{1+\pi/\omega - \epsilon}(\Omega) \) and
\begin{equation}
\|\zeta\|_{H^{1+\pi/\omega - \epsilon}(\Omega)} \lesssim \epsilon \|\phi\|_{H^{-\alpha}(\Omega)}.
\end{equation}

Let \(\Pi_k \) be the nodal interpolation operator associated with \(V_k \). It follows from standard interpolation error estimates (cf. [20], [16]) and (3.13) that
\begin{equation}
\|\zeta - \Pi_k \zeta\|_{H^1(\Omega)} \lesssim \epsilon h_k^{(\pi/\omega) - \epsilon} \|\phi\|_{H^{-\alpha}(\Omega)}.
\end{equation}

Using (2.4), (3.12) and (3.14), we have
\begin{equation}
\phi(v - P_{k-1}v) = \int_{\Omega} \nabla \zeta \cdot \nabla (v - P_{k-1}v) \ dx
\end{equation}
\begin{equation}
= \int_{\Omega} \nabla (\zeta - \Pi_{k-1} \zeta) \cdot \nabla (v - P_{k-1}v) \ dx
\end{equation}
\begin{equation}
\lesssim \epsilon h_k^{(\pi/\omega) - \epsilon} \|\phi\|_{H^{-\alpha}(\Omega)} \|v - P_{k-1}v\|_{H^1(\Omega)}.
\end{equation}

The estimate (3.11) follows from (3.15) and the duality formula
\begin{equation}
\|\eta\|_{H^{s}(\Omega)} = \sup \left\{ \|\phi\|_{H^{-\alpha}(\Omega)} \right\} \quad \forall \eta \in H^1_0(\Omega),
\end{equation}
where the supremum is taken over all \(\phi \in H^{-\alpha}(\Omega) \setminus \{0\} \).
The final ingredient is the relation between the mesh dependent norm $\| \cdot \|_s$ and the Sobolev norm $\| \cdot \|_{H^s(\Omega)}$ on V_k. First of all, we have $\| v\|_{H^1(\Omega)} = \| v\|_1$ and $\| v\|_{L^2(\Omega)} \lesssim \| v\|_s$ for all $v \in V_k$. Interpolating these estimates (cf. [50]), we have

$$\| v\|_{H^s(\Omega)} \lesssim \| v\|_s \quad \forall v \in V_k, \; 0 \leq s \leq 1.$$

(3.17)

On the other hand, there exists (cf. [21], [48]) an interpolation operator $\pi_k : L^2(\Omega) \rightarrow V_k$ such that

$$\| \pi_k v \|_0 \lesssim \| \pi_k v \|_{L^2(\Omega)} \lesssim \| v\|_{L^2(\Omega)} \quad \forall v \in L^2(\Omega),$$

(3.18)

$$\| \pi_k v \|_1 \lesssim \| \pi_k v \|_{H^1(\Omega)} \lesssim \| v\|_{H^1(\Omega)} \quad \forall v \in H^1_0(\Omega),$$

(3.19)

$$\pi_k v = v \quad \forall v \in V_k.$$

(3.20)

For $0 < s < 1$ and $s \neq 1/2$, we can interpolate (3.18) and (3.19) (cf. [50]) to obtain

$$\| \pi_k v \|_s \lesssim \| v\|_{H^s(\Omega)} \quad \forall v \in H^s_0(\Omega).$$

(3.21)

Combining (3.20) and (3.21), we find

$$\| v\|_s \lesssim \| v\|_{H^s(\Omega)} \quad \forall v \in V_k, \; 0 \leq s \leq 1, \; s \neq 1/2.$$

(3.22)

In other words, the mesh dependent norm $\| \cdot \|_s$ and the Sobolev norm $\| \cdot \|_{H^s(\Omega)}$ are equivalent on V_k as long as $s \neq 1/2$.

Therefore, from (3.6)–(3.11) and (3.22), we have the following error estimate for the two-grid algorithm:

$$\| z - \hat{z} \|_{H^{\alpha}(\Omega)} \lesssim h^{(\pi/\omega)-c} R_k^{m} (z - z_m)_{H^1(\Omega)}$$

$$\lesssim m^{-c(\pi/\omega)+c/2} \lesssim \eta.$$

(3.23)

Now we estimate the error for the kth level iteration. Let $\gamma_m = m^{-c(\pi/\omega)+c/2}$, and suppose that the error of the $(k - 1)$th level iteration in the $H^{\alpha}(\Omega)$ norm is reduced by a factor η. Then it follows from (2.9) and (3.23) that

$$\| z - MG(k, z_0, g) \|_{H^{\alpha}(\Omega)} \leq \| z - \hat{z} \|_{H^{\alpha}(\Omega)} + \| g - qz \|_{H^{\alpha}(\Omega)}$$

$$\leq C\gamma_m \| z - z_0 \|_{H^{\alpha}(\Omega)} + \eta^2 \| q \|_{H^{\alpha}(\Omega)}.$$

(3.24)

From (3.8), (3.11) and (3.17), we have

$$\| P_{k-1} v \|_{H^{\alpha}(\Omega)} \leq \| v - P_{k-1} v \|_{H^{\alpha}(\Omega)} + \| v\|_{H^{\alpha}(\Omega)}$$

$$\lesssim h^{(\pi/\omega)-c} \| v\|_{H^1(\Omega)} + \| v\|_{H^{\alpha}(\Omega)}$$

$$\lesssim \| v\|_{H^{\alpha}(\Omega)} \quad \forall v \in V_k.$$

(3.25)

Combining (3.5), (3.9) and (3.25), we obtain

$$\| q \|_{H^{\alpha}(\Omega)} = \| P_{k-1} (z - z_m) \|_{H^{\alpha}(\Omega)}$$

$$\leq C\gamma_m \| z - z_0 \|_{H^{\alpha}(\Omega)}.$$

(3.26)

The estimates (3.22), (3.24) and (3.26) together imply that

$$\| z - MG(k, z_0, g) \|_{H^{\alpha}(\Omega)} \leq (C\gamma_m + C\eta^2) \| z - z_0 \|_{H^{\alpha}(\Omega)}.$$

(3.27)

For m sufficiently large, we have $\gamma_m < (4C\gamma_m)^{-1}$ and

$$\eta_m = [1 - (1 - 4C\gamma_m)^{1/2}] / (2C\gamma_m)$$

is a fixed point of the map \(T(\eta) = C_2 \gamma_m + C_3 \eta^2 \). Since the first level iteration is an exact solver, it follows from (3.27) and mathematical induction that

\[
\|z - MG(k, z_0, \eta)\|_{H^{\alpha}(\Omega)} \leq \eta_m \|z - z_0\|_{H^{\alpha}(\Omega)} \quad \text{for} \quad k \geq 1.
\]

As \(\lim_{m \to \infty} \eta_m = 0 \), the lemma follows from (3.28). \(\Box \)

4. Convergence analysis for the full multigrid algorithm I

Theorem 4.1. Let \(p = 2 \), \(0 < \epsilon < \pi/\omega \), \(\alpha_\epsilon = 1 - (\pi/\omega) + \epsilon \neq 1/2 \) and the number of smoothing steps \(m \) be sufficiently large so that (3.1) and (3.2) hold for \(0 < \delta < 1 \). If the number of nested iterations \(n \) is sufficiently large, then we have

\[
\|w - w_k\|_{H^{\alpha}(\Omega)} \lesssim h_k \|f\|_{L^2(\Omega)} ,
\]

\[
\sum_{j=1}^{J} |\kappa_j - \kappa_{j,k}| \lesssim h_k^{1+(\pi/\omega)-2\epsilon} \|f\|_{L^2(\Omega)} ,
\]

\[
\|w - w_k\|_{H^{\alpha}(\Omega)} \lesssim h_k^{1+(\pi/\omega)-2\epsilon} \|f\|_{L^2(\Omega)} ,
\]

where \(w_k \) and \(\kappa_{j,k} \) are computed by (2.11)–(2.18).

Proof. We will establish (4.2) and (4.3) through recursive estimates. It follows from (1.5) and (2.15) that, for \(1 \leq j \leq J \),

\[
|\kappa_j - \kappa_{j,k}| = \frac{1}{\pi} \left| \int_\Omega (u - u_{k-1}) \Delta s_{-j} \, dx \right| \lesssim \|u - u_{k-1}\|_{L^2(\Omega)} \|\Delta s_{-j}\|_{L^2(\Omega)} \lesssim \|\hat{w}_{k-1} - w_{k-1}\|_{H^{\alpha}(\Omega)} ,
\]

where (cf. (1.2), (1.15) and (2.18))

\[
\hat{w}_k = u - \sum_{j=1}^{J} \kappa_{j,k} s_j = \sum_{j=1}^{J} (\kappa_j - \kappa_{j,k}) s_j + w = (u - u_k) + w_k .
\]

Let \(a_k = \sum_{j=1}^{J} |\kappa_j - \kappa_{j,k}| \) and \(b_k = \|\hat{w}_k - w_k\|_{H^{\alpha}(\Omega)} \). We have proved that

\[
a_k \lesssim b_{k-1} .
\]

To estimate \(b_k \), we begin with

\[
b_k \leq \|\hat{w}_k - P_k \hat{w}_k\|_{H^{\alpha}(\Omega)} + \|P_k \hat{w}_k - w_k\|_{H^{\alpha}(\Omega)} .
\]

Using (1.4), (3.11), (4.5) and standard finite element discretization error estimates (cf. [20], [16]), we find

\[
\|\hat{w}_k - P_k \hat{w}_k\|_{H^{\alpha}(\Omega)} \leq \sum_{j=1}^{J} |\kappa_j - \kappa_{j,k}| \|s_j - P_k s_j\|_{H^{\alpha}(\Omega)} + \|w - P_k w\|_{H^{\alpha}(\Omega)}
\]

\[
\lesssim h_k^{(\pi/\omega)-2\epsilon} \left[\sum_{j=1}^{J} |\kappa_j - \kappa_{j,k}| \|s_j - P_k s_j\|_{H^{1}(\Omega)} + \|w - P_k w\|_{H^{1}(\Omega)} \right]
\]

\[
\lesssim h_k^{2(\pi/\omega)-2\epsilon} a_k + h_k^{1+(\pi/\omega)-2\epsilon} \|f\|_{L^2(\Omega)} .
\]
Since $P_k \hat{w}_k \in V_k$ is the exact solution of the equation $A_k z = g_k$ (where g_k is defined by (2.17)), it follows from (2.16) and (3.2) that

\begin{equation}
\| P_k \hat{w}_k - w_k \|_{H^{\alpha}(\Omega)} \leq \delta^n \| P_k \hat{w}_k - w_{k-1} \|_{H^{\alpha}(\Omega)}.
\end{equation}

Note that (1.2) and (4.5) imply

\begin{equation}
w - \hat{w}_k = \sum_{j=1}^J (\kappa_{j,k} - \kappa_j) s_j.
\end{equation}

From (4.8) and (4.10), we obtain

\begin{equation}
\| P_k \hat{w}_k - w_{k-1} \|_{H^{\alpha}(\Omega)} \leq \| P_k \hat{w}_k - \hat{w}_k \|_{H^{\alpha}(\Omega)} + \| \hat{w}_k - w \|_{H^{\alpha}(\Omega)}
\end{equation}

\begin{equation}
+ \| w - w_{k-1} \|_{H^{\alpha}(\Omega)} + \| w_{k-1} - w_{k-1} \|_{H^{\alpha}(\Omega)}
\end{equation}

\begin{equation}
\lesssim \epsilon h_k^{2(\pi/\omega) - 2\epsilon} a_k + h_k^{1+(\pi/\omega) - \epsilon} \| f \|_{L^2(\Omega)} + a_k + a_{k-1} + b_{k-1}.
\end{equation}

It follows from (4.7)-(4.9) and (4.11) that

\begin{equation}
b_k \lesssim \delta^n (b_{k-1} + a_k + a_{k-1}) + h_k^{2(\pi/\omega) - 2\epsilon} a_k + h_k^{1+(\pi/\omega) - \epsilon} \| f \|_{L^2(\Omega)}.
\end{equation}

Combining (4.6) and (4.12), we find

\begin{equation}
\begin{bmatrix} a_k \\ b_k \end{bmatrix} \leq C \begin{bmatrix} 0 \\ \delta^n + h_k^{2(\pi/\omega) - 2\epsilon} \end{bmatrix} \begin{bmatrix} a_{k-1} \\ b_{k-1} \end{bmatrix} + C h_k^{1+(\pi/\omega) - \epsilon} \| f \|_{L^2(\Omega)} \begin{bmatrix} 0 \\ 1 \end{bmatrix},
\end{equation}

where the vector inequality is interpreted componentwise.

Since δ^n and $h_k^{2(\pi/\omega) - 2\epsilon}$ are both small for n and k large, we can consider the matrix in (4.13) to be a perturbation of the nilpotent matrix $\begin{bmatrix} 0 & C \epsilon \\ 0 & 0 \end{bmatrix}$. Therefore, for n sufficiently large and $k > k_\epsilon$, we have

\begin{equation}
\begin{bmatrix} a_k \\ b_k \end{bmatrix} \leq C \begin{bmatrix} a_{k-1} \\ b_{k-1} \end{bmatrix} + C h_k^{1+(\pi/\omega) - \epsilon} \| f \|_{L^2(\Omega)} \begin{bmatrix} 0 \\ 1 \end{bmatrix},
\end{equation}

where the constant matrix C has nonnegative components and satisfies

\begin{equation}
\| C^n \|_{\infty} \lesssim \frac{1}{4^n}.
\end{equation}

By iterating (4.14), for $k > k_\epsilon$, we obtain

\begin{equation}
\begin{bmatrix} a_k \\ b_k \end{bmatrix} \leq \epsilon \left(h_k^{1+(\pi/\omega) - \epsilon} + \frac{1}{4} h_k^{1+(\pi/\omega) - \epsilon} + \frac{1}{4^2} h_k^{1+(\pi/\omega) - \epsilon} + \cdots \right) \| f \|_{L^2(\Omega)}
\end{equation}

\begin{equation}
+ \left(\frac{1}{4} \right)^{k-k_\epsilon} \begin{bmatrix} a_{k_{\epsilon}} \\ b_{k_{\epsilon}} \end{bmatrix} \| f \|_{L^2(\Omega)}.
\end{equation}

Since $h_{k-1} = 2h_k$ and $1 + (\pi/\omega) - \epsilon < 2$, it follows from (4.16) that

\begin{equation}
\begin{bmatrix} a_k \\ b_k \end{bmatrix} \leq \epsilon h_k^{1+(\pi/\omega) - \epsilon} \| f \|_{L^2(\Omega)} + \left(\frac{1}{4} \right)^{k-k_\epsilon} \begin{bmatrix} a_{k_{\epsilon}} \\ b_{k_{\epsilon}} \end{bmatrix} \| f \|_{L^2(\Omega)}.
\end{equation}

On the other hand, from (1.4) and (2.11)-(2.14) we have

\begin{equation}
a_1 = \sum_{j=1}^J |\kappa_j| \leq \| f \|_{L^2(\Omega)},
\end{equation}

\begin{equation}
b_1 = \| u - P_1 u \|_{H^{\alpha}(\Omega)} \lesssim \| u \|_{H^1(\Omega)} \lesssim \| f \|_{L^2(\Omega)}.
\end{equation}
It follows from (4.13), (4.18) and (4.19) that
\begin{equation}
\left\| \frac{a_k}{b_k} \right\|_\infty \lesssim \epsilon \|f\|_{L^2(\Omega)} \lesssim h_k^{1+(\pi/\omega) - \epsilon} \|f\|_{L^2(\Omega)} \quad \text{for} \quad 1 \leq k \leq k_\epsilon.
\end{equation}

Combining (4.17) and (4.20), we find
\begin{equation}
\left\| \frac{a_k}{b_k} \right\|_\infty \lesssim h_k^{1+(\pi/\omega) - \epsilon} \|f\|_{L^2(\Omega)} \quad \text{for} \quad k \geq 1.
\end{equation}

We have established (4.2), and the estimate (4.3) follows from (4.10) and (4.21).

Repeating the arguments in (4.7)–(4.11) with respect to the subdivision of \(T \), we find
\begin{equation}
|\hat{w}_k - w_k|_{H^1(\Omega)} \lesssim \delta^n |\hat{w}_{k-1} - w_{k-1}|_{H^1(\Omega)} + h_k \|f\|_{L^2(\Omega)}.
\end{equation}

We obtain from iterating (4.22) that
\begin{equation}
|\hat{w}_k - w_k|_{H^1(\Omega)} \lesssim h_k \|f\|_{L^2(\Omega)}.
\end{equation}

The estimate (4.1) follows from (4.2) (with \(\epsilon < \pi/\omega \)), (4.10) and (4.23).

The following corollary is immediate.

Corollary 4.2. Under the assumptions of Theorem 4.1, we have
\begin{equation}
|u - u_k|_{H^1(\Omega)} \lesssim h_k \|f\|_{L^2(\Omega)}.
\end{equation}

5. Convergence analysis for the full multigrid algorithm II

Since we are really computing the regular part of the singular solution in our approach, it is possible to exploit superconvergence results. This idea will be demonstrated by the following analysis of the full multigrid algorithm II.

We first investigate the properties of the intergrid transfer operator \(I^k_{k-1} \).

Lemma 5.1. The following estimates hold for the intergrid transfer operator defined by (2.27):
\begin{align}
|I^k_{k-1}v|_{H^1(\Omega)} & \lesssim |v|_{H^1(\Omega)} \quad \forall v \in V_{k-1}, \tag{5.1} \\
|\Pi_k \zeta - I^k_{k-1} \Pi_{k-1} \zeta|_{H^1(\Omega)} & \lesssim h_k^{1+t} \|\zeta\|_{H^{2+t}(\Omega)} \quad \forall \zeta \in H^{2+t}(\Omega) \cap H^1_0(\Omega), \tag{5.2}
\end{align}
where \(\Pi_k \) is the nodal interpolation operator associated with \(V_k \) and \(0 \leq t \leq 1 \).

Proof. Let \(T \) be a triangle, \(\eta \) be a quadratic polynomial, and \(\eta^I \) be the linear interpolant of \(\eta \) with respect to the subdivision of \(T \) obtained by connecting the midpoints of the sides of \(T \). A standard scaling argument shows that
\begin{equation}
C_1 |\eta^I|_{H^1(T)} \leq |\eta|_{H^1(T)} \leq C_2 |\eta^I|_{H^1(T)},
\end{equation}
where the constants \(C_1 \) and \(C_2 \) depend only on the angles of \(T \).

Recall that \(Q_k \subset H^1_0(\Omega) \) (\(k = 0, 1, 2, \ldots \)) is the quadratic Lagrange finite element space associated with \(T_k \), and \(I^k_{k-1} \) (resp., \(I^{k-1}_{k-2} \)) is the nodal interpolation operator from \(Q_{k-2} \) into \(V_{k-1} \) (resp., \(V_k \)). We deduce from (5.3) that, for \(k \geq 2 \),
\begin{equation}
|I^k_{k-2}q|_{H^1(\Omega)} \lesssim |q|_{H^1(\Omega)} \lesssim |I^{k-1}_{k-2}q|_{H^1(\Omega)} \quad \forall q \in Q_{k-2}.
\end{equation}

The estimate (5.1) follows from (2.27) and (5.4).
Let T be a triangle in \mathcal{T}_{k-2} and q be a polynomial of degree ≤ 2. By restricting all the definitions to T, we find

$$\Pi_k q - I_{k-1}^k \Pi_{k-1} q = \Pi_k q - T_{k-2}^k (T_{k-2}^{k-1})^{-1} \Pi_{k-1} q$$

$$= \Pi_k q - T_{k-2}^k q = 0.$$

By the Bramble-Hilbert lemma (cf. [11]) and a standard scaling argument we deduce from (5.5) that

$$\|\Pi_k \zeta - I_{k-1}^k \Pi_{k-1} \zeta\|_{H^1(\Omega)} \lesssim h_k \|\zeta\|_{H^2(\Omega)} \quad \forall \zeta \in H^3(\Omega) \cap H^1_0(\Omega),$$

(5.6)

$$\|\Pi_k \zeta - I_{k-1}^k \Pi_{k-1} \zeta\|_{H^1(\Omega)} \lesssim h_k \|\zeta\|_{H^2(\Omega)} \quad \forall \zeta \in H^2(\Omega) \cap H^1_0(\Omega).$$

(5.7)

The estimate (5.2) follows from interpolating (5.6) and (5.7) (cf. [50]).

Next we discuss a superconvergence result for the linear finite element. A uniform band in a triangulation is a collection of triangles between two parallel lines such that any two triangles sharing a common side form a parallelogram (cf. Figure 1), and the boundary of the band consists of the two parallel lines and parts of $\partial \Omega$. We say that a triangulation satisfies the uniform band condition if it can be divided completely into uniform bands (cf. Figure 2). Note that one can always find a triangulation satisfying the uniform band condition for any polygonal domain whose vertices all have rational coordinates, and the uniform band condition is preserved by regular subdivision.

The proof of the following result can be found in [18] (cf. also [34], [41], [61], [19], [35]).

Theorem 5.2: Suppose $\zeta \in H^3(\Omega) \cap H^1_0(\Omega)$. Then

$$\|\Pi_k \zeta - I_{k-1}^k \Pi_{k-1} \zeta\|_{H^1(\Omega)} \lesssim h_k \|\zeta\|_{H^2(\Omega)} \quad \forall \zeta \in H^2(\Omega) \cap H^1_0(\Omega).$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 5.2. Suppose the triangulations T_k satisfy the uniform band condition and $\zeta \in H^3(\Omega) \cap H^1_0(\Omega)$. Then
\begin{equation}
|\Pi_k \zeta - P_k \zeta|_{H^1(\Omega)} \lesssim h_k^2 \|\zeta\|_{H^3(\Omega)}.
\end{equation}

Corollary 5.3. Suppose the triangulations T_k satisfy the uniform band condition and $\zeta \in H^{2+\ell}(\Omega) \cap H^1_0(\Omega)$ for $0 \leq t \leq 1$. Then
\begin{equation}
|\Pi_k \zeta - P_k \zeta|_{H^1(\Omega)} \lesssim h_k^{1+\ell} \|\zeta\|_{H^{2+\ell}(\Omega)}.
\end{equation}

Proof. The estimate (5.9) follows from interpolating (5.8) and the obvious estimate
\begin{equation}
|\Pi_k \zeta - P_k \zeta|_{H^1(\Omega)} \lesssim h_k \|\zeta\|_{H^2(\Omega)} \quad \forall \zeta \in H^2(\Omega) \cap H^1_0(\Omega).
\end{equation}

We now establish the convergence properties of the full multigrid algorithm II.

Theorem 5.4. Let $f \in H^1(\Omega)$. Assume that the triangulations T_k satisfy the uniform band condition, $p = 1$ or 2, and $m \geq 1$. If the number of nested iterations n is sufficiently large, then we have
\begin{equation}
|\Pi_k w - w_k|_{H^1(\Omega)} \lesssim h_k^2 \|f\|_{H^1(\Omega)},
\end{equation}
\begin{equation}
\sum_{j=1}^N \sum_{\ell \in L_j} |\kappa_{j,\ell} - \kappa_{j,\ell,k}| \lesssim h_k^{2-\ell} \|f\|_{H^1(\Omega)},
\end{equation}
where w_k and $\kappa_{j,\ell,k}$ are computed by (2.19)–(2.26).

Proof. It follows from (1.24), (2.23), (2.26) and the Poincaré inequality that
\begin{equation}
|\kappa_{j,\ell} - \kappa_{j,\ell,k}| = \frac{1}{\ell r_j} \left| \int_{\Omega} (\hat{w}_{k-1} - w_{k-1}) \Delta s_{j,-\ell} \, dx \right|
\lesssim \left| \int_{\Omega} (\hat{w}_{k-1} - \Pi_{k-1} \hat{w}_{k-1}) \Delta s_{j,-\ell} \, dx \right|
+ \left| \int_{\Omega} (\Pi_{k-1} \hat{w}_{k-1} - w_{k-1}) \Delta s_{j,-\ell} \, dx \right|
\lesssim \|\hat{w}_{k-1} - \Pi_{k-1} \hat{w}_{k-1}\|_{L^2(\Omega)} + \|\Pi_{k-1} \hat{w}_{k-1} - w_{k-1}\|_{H^1(\Omega)},
\end{equation}
where
\begin{equation}
\hat{w}_k = u - \sum_{j=1}^N \sum_{\ell \in L_j} \kappa_{j,\ell,k} s_{j,\ell} = (u - u_k) + w_k,
\end{equation}
\begin{align*}
= \sum_{j=1}^N \sum_{\ell \in L_j} (\kappa_{j,\ell} - \kappa_{j,\ell,k}) s_{j,\ell} + w.
\end{align*}
Let $a_k = \sum_{j=1}^N \sum_{\ell \in L_j} |\kappa_{j,\ell} - \kappa_{j,\ell,k}|$ and $b_k = |\Pi_k \hat{w}_k - w_k|_{H^1(\Omega)}$. Since $s_{j,\ell} \in H^{1+(\pi/\omega)-\epsilon}(\Omega)$ and $w \in H^{3-\epsilon}(\Omega)$, we have from (1.23), (5.13) and standard interpolation error estimates that
\begin{align}
\|\hat{w}_{k-1} - \Pi_{k-1} \hat{w}_{k-1}\|_{L^2(\Omega)} &\leq \sum_{j=1}^N \sum_{\ell \in L_j} |\kappa_{j,\ell} - \kappa_{j,\ell,k}| \|s_{j,\ell} - \Pi_{k-1} s_{j,\ell}\|_{L^2(\Omega)}
\lesssim h_k^{1+(\pi/\omega)-\epsilon} a_{k-1} + h_k^2 \|f\|_{H^1(\Omega)}.
\end{align}
As in the proof of Theorem 4.1, by iterating (5.15) and (5.20) we have

\begin{equation}
a_k \lesssim a_{k-1} + b_{k-1} + h^2_k \|f\|_{H^1(\Omega)}.
\end{equation}

On the other hand, we have

\begin{equation}
b_k \lesssim \|\Pi_k \hat{w}_k - P_k \hat{w}_k\|_{H^1(\Omega)} + \|P_k \hat{w}_k - w_k\|_{H^1(\Omega)},
\end{equation}

and from (1.23), (5.9), (5.13) and a standard interpolation error estimate,

\begin{equation}
(5.16)
\end{equation}

\begin{equation}
(5.15)
\end{equation}

\begin{equation}
(5.17)
\end{equation}

\begin{equation}
(5.18)
\end{equation}

Since \(P_k \hat{w}_k \in V_k\) is the exact solution of \(A_k z = g_k\) (where \(g_k\) is defined by (2.25)), it follows from (2.24) and Lemma 3.1 that

\begin{equation}
(5.19)
\end{equation}

\begin{equation}
(5.20)
\end{equation}

\begin{equation}
(5.21)
\end{equation}

\begin{equation}
(5.22)
\end{equation}

The estimate (5.11) is the same as (5.21). We deduce from (5.13) that

\begin{equation}
(5.23)
\end{equation}

The estimate (5.10) follows from (5.21)–(5.23).

Remark. By exploiting superconvergence we are able to perform the analysis in the proof of Theorem 5.4 using the energy norm and still obtain a higher rate of convergence. The use of the energy norm also makes it possible to apply Lemma 3.1 (instead of Lemma 3.2) to demonstrate convergence even for the \(V\)-cycle algorithm with one smoothing step.

The following corollary is immediate.
Corollary 5.5. Under the assumptions of Theorem 5.4, we have
\begin{equation}
|u - u_k|_{H^1(\Omega)} \lesssim h_k \|f\|_{H^1(\Omega)}.
\end{equation}

Corollary 5.6. Under the assumptions of Theorem 5.4, we have
\begin{equation}
\max_p |u(p) - u_k(p)| \lesssim \epsilon h_k^2 - \epsilon \|f\|_{H^1(\Omega)},
\end{equation}
where the maximum is taken over all the vertices \(p \) of \(T_k \).

Proof. It suffices to estimate \(\|\Pi_k(u - u_k)\|_{L^\infty(\Omega)} \). By (1.17), (2.26), (5.10), (5.11) and the discrete Sobolev inequality (cf. [46], [61]), we have
\begin{equation}
\|\Pi_k(u - u_k)\|_{L^\infty(\Omega)} \leq \sum_{j=1}^N \sum_{\ell \in \mathcal{L}_j} |\kappa_{j,\ell} - \kappa_{j,\ell,k}| \|\Pi_k s_{j,\ell}\|_{L^\infty(\Omega)} + \|\Pi_k w - w_k\|_{L^\infty(\Omega)}
\end{equation}
\begin{equation}
\lesssim \sum_{j=1}^N \sum_{\ell \in \mathcal{L}_j} |\kappa_{j,\ell} - \kappa_{j,\ell,k}| + |\ln h_k|^{1/2} \|\Pi_k w - w_k\|_{H^1(\Omega)}
\end{equation}
\begin{equation}
\lesssim \epsilon h_k^2 - \epsilon \|f\|_{H^1(\Omega)}.
\end{equation}

Remark. If none of the angles of \(\Omega \) is an integer multiple of \(\pi/2 \), then the regular part \(w \) in (1.20) actually belongs to \(H^3(\Omega) \) (cf. [27], [23]). For such \(\Omega \) the \(\epsilon \)-dependence in (1.23), (5.9) and (5.10) disappears, and the estimate (5.25) becomes
\begin{equation}
\max_p |u(p) - u_k(p)| \lesssim h_k^2 \ln h_k^{1/2} \|f\|_{H^1(\Omega)}.
\end{equation}

Remark. It is well known (cf. [47], [44], [16]) that
\begin{equation}
\|u - \tilde{u}_h\|_{L^\infty(\Omega)} \lesssim h^2 \ln h \|u\|_{W^2_\infty(\Omega)},
\end{equation}
where \(\tilde{u}_h \) is the P1 finite element solution of (1.1). It is interesting to see that a multigrid method can produce similar results for singular solutions.

6. Numerical experiments

In this section, we report the results of some numerical experiments for (1.1) performed on the \(\Gamma \)-shaped domain \(\Omega \) (cf. Figures 3 and 4) with vertices \((0,0), (0,1), (1,1), (-1,1), (-1,-1) \) and \((0,-1)\). We use the P1 Lagrange finite element in the experiments. All the computations are done using a \(W \)-cycle \(k \)th level iteration with 5 smoothing steps, and the number of nested iterations in the full multigrid algorithms is also 5. The mesh size \(h_k \) for the \(k \)th level grid is taken to be \(2^{-k} \). We first describe the experiments; comments on the numerical results are given near the end of this section.

Remark. Convergence of the algorithms has been observed for \(m = n = 1 \). We choose to report the results for \(m = n = 5 \), since the numerical results do not appear to improve for any larger \(m \) or \(n \).

The two singular functions for this \(\Gamma \)-shaped domain are:
\begin{equation}
s_1(r, \theta) = \phi(r)r^{2/3} \sin \left(\frac{2}{3}\theta \right),
\end{equation}
\begin{equation}
s_2(r, \theta) = \phi(r)r^{4/3} \sin \left(\frac{4}{3}\theta \right),
\end{equation}
where the cut-off function $\phi(r)$ is defined by

$$
\phi(r) = \begin{cases}
1 & 0 \leq r \leq 1/4, \\
-192r^5 + 480r^4 - 440r^3 + 180r^2 - \frac{135}{4}r + \frac{27}{8} & 1/4 \leq r \leq 3/4, \\
0 & 3/4 \leq r.
\end{cases}
$$

(6.3)

In the first set of experiments, we solve the Poisson equation (1.1) with $f = -\Delta s_1 - \Delta s_2 + 6x(y^2 - y^4) + (x - x^3)(12y^2 - 2)$. The exact solution is therefore

$$
u = s_1 + s_2 + (x - x^3)(y^2 - y^4).
$$

(6.4)

In the first experiment, we solve (1.1) using the standard full multigrid algorithm (where the right-hand sides of the discrete equations on all levels come from f) on the grids depicted in Figure 3. The approximate stress intensity factors κ_k are computed by the extraction formula (1.7) using the P1 finite element solution u_k obtained by the standard full multigrid method. The error e_k in the energy norm is defined by $e_k = |\Pi_k u - u_k|_{H^1(\Omega)}$. The rate of convergence σ_k for the stress intensity factor and the rate of convergence ϵ_k in the energy norm are computed by

$$
\sigma_k = \log_2 \left(\frac{|\kappa_k - 1|}{|\kappa_{k-1} - 1|} \right),
$$

(6.5)

$$
\epsilon_k = \log_2 \left(\frac{e_k - 1}{e_{k-1}} \right).
$$

(6.6)

The results are tabulated in Table 1.

In the second experiment, we solve (6.1) using the full multigrid algorithm I described in Section 2 on the grids depicted in Figure 3. This algorithm computes
κ ∈ R and w_k ∈ V_k which are approximations of the stress intensity factor κ = 1 and the regular part of the solution in (6.4), namely, w = s_2 + (x - x^3)(y^2 - y^4). The error e_k in the energy norm is defined by e_k = |Π_k w - w_k|_{H^1(Ω)}. The convergence rates σ_k and ε_k are again computed by (6.5) and (6.6). The results are tabulated in Table 2.

In the third experiment, we solve (1.1) by the full multigrid algorithm II described in Section 2 on the uniform grids depicted in Figure 4. This algorithm computes κ_{1,k} ∈ R, κ_{2,k} ∈ R and w_k ∈ V_k which are approximations of the stress intensity factors κ_1 = 1, κ_2 = 1 and the regular part of the solution in (6.4), namely, w = (x - x^3)(y^2 - y^4). The error e_k in the energy norm is defined by e_k = |Π_k w - w_k|_{H^1(Ω)}. The convergence rates σ_{1,k} (σ_{2,k}) and ε_k are computed as in (6.5) and (6.6). The results are tabulated in Table 3.

Table 1. Results for the standard full multigrid algorithm with f = −Δs_1 − Δs_2 + 6x(y^2 - y^4) + (x - x^3)(12y^2 - 2)

<table>
<thead>
<tr>
<th>k</th>
<th>κ_k</th>
<th>σ_k</th>
<th>ε_k</th>
<th>ε_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.699929601</td>
<td>1.27093 × 10^{-1}</td>
<td>1</td>
<td>1.045</td>
</tr>
<tr>
<td>2</td>
<td>1.2589102299</td>
<td>5.91072 × 10^{-4}</td>
<td>1.82</td>
<td>1.0728</td>
</tr>
<tr>
<td>3</td>
<td>1.03640706</td>
<td>1.61387 × 10^{-4}</td>
<td>1.89</td>
<td>1.905</td>
</tr>
<tr>
<td>4</td>
<td>1.028708790</td>
<td>5.74371 × 10^{-2}</td>
<td>1.97</td>
<td>1.0535</td>
</tr>
<tr>
<td>5</td>
<td>1.0073492045</td>
<td>2.76732 × 10^{-2}</td>
<td>1.84</td>
<td>0.7482</td>
</tr>
<tr>
<td>6</td>
<td>1.0020544785</td>
<td>1.64752 × 10^{-2}</td>
<td>1.89</td>
<td>0.6803</td>
</tr>
<tr>
<td>7</td>
<td>1.0005531037</td>
<td>1.02811 × 10^{-2}</td>
<td>1.97</td>
<td>0.6683</td>
</tr>
<tr>
<td>8</td>
<td>1.0001571227</td>
<td>6.46930 × 10^{-2}</td>
<td>1.82</td>
<td>0.6683</td>
</tr>
<tr>
<td>9</td>
<td>1.0000458701</td>
<td>4.07502 × 10^{-3}</td>
<td>1.82</td>
<td>0.6683</td>
</tr>
<tr>
<td>10</td>
<td>1.0000142976</td>
<td>2.56715 × 10^{-3}</td>
<td>1.82</td>
<td>0.6683</td>
</tr>
<tr>
<td>11</td>
<td>1.0000044660</td>
<td>1.62</td>
<td>1.61722 × 10^{-3}</td>
<td>0.6666</td>
</tr>
</tbody>
</table>

Table 2. Results for the full multigrid algorithm I with f = −Δs_1 − Δs_2 + 6x(y^2 - y^4) + (x - x^3)(12y^2 - 2)

<table>
<thead>
<tr>
<th>k</th>
<th>κ_k</th>
<th>σ_k</th>
<th>ε_k</th>
<th>ε_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.6999296014</td>
<td>7.929 × 10^{-4}</td>
<td>7.929</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>2</td>
<td>0.82132136706</td>
<td>2.322 × 10^{-4}</td>
<td>2.322</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>3</td>
<td>1.02037630458</td>
<td>3.456 × 10^{-2}</td>
<td>3.456</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>4</td>
<td>0.99943755129</td>
<td>6.236 × 10^{-3}</td>
<td>6.236</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>5</td>
<td>1.00003984026</td>
<td>1.595 × 10^{-3}</td>
<td>1.595</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>6</td>
<td>1.00000536058</td>
<td>4.200 × 10^{-4}</td>
<td>4.200</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>7</td>
<td>1.00000234005</td>
<td>1.170 × 10^{-4}</td>
<td>1.170</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>8</td>
<td>1.00000075769</td>
<td>3.567 × 10^{-10}</td>
<td>3.567</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>9</td>
<td>1.00000012632</td>
<td>1.204 × 10^{-10}</td>
<td>1.204</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>10</td>
<td>1.00000002876</td>
<td>4.397 × 10^{-6}</td>
<td>4.397</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>11</td>
<td>1.00000000746</td>
<td>1.95</td>
<td>1.95</td>
<td>10^{-6}</td>
</tr>
</tbody>
</table>
Table 3. Results for the full multigrid algorithm II with $f = -\Delta s_1 - \Delta s_2 + 6x(y^3 - y^3) + (x - x^3)(12y^2 - 2)$

<table>
<thead>
<tr>
<th>k</th>
<th>$\kappa_{1,k}$</th>
<th>$\sigma_{1,k}$</th>
<th>$\kappa_{2,k}$</th>
<th>$\sigma_{2,k}$</th>
<th>ϵ_k</th>
<th>e_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.124×10^0</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1.6229151283</td>
<td>-</td>
<td>1.1713129888</td>
<td>-</td>
<td>7.361×10^{-1}</td>
<td>0.61</td>
</tr>
<tr>
<td>3</td>
<td>0.8859991798</td>
<td>2.45</td>
<td>0.99336080108</td>
<td>4.69</td>
<td>1.417×10^{-2}</td>
<td>2.38</td>
</tr>
<tr>
<td>4</td>
<td>1.009177397</td>
<td>3.63</td>
<td>1.00029662538</td>
<td>4.48</td>
<td>1.131×10^{-2}</td>
<td>3.65</td>
</tr>
<tr>
<td>5</td>
<td>0.9999856171</td>
<td>9.32</td>
<td>1.00023130682</td>
<td>0.36</td>
<td>5.829×10^{-4}</td>
<td>4.28</td>
</tr>
<tr>
<td>6</td>
<td>1.0000653041</td>
<td>-2.18</td>
<td>1.00002651087</td>
<td>3.13</td>
<td>1.551×10^{-4}</td>
<td>1.91</td>
</tr>
<tr>
<td>7</td>
<td>1.0000136298</td>
<td>2.26</td>
<td>1.0000097600</td>
<td>1.44</td>
<td>3.636×10^{-5}</td>
<td>2.09</td>
</tr>
<tr>
<td>8</td>
<td>1.0000044994</td>
<td>1.60</td>
<td>1.00000116447</td>
<td>3.07</td>
<td>9.574×10^{-6}</td>
<td>1.93</td>
</tr>
<tr>
<td>9</td>
<td>1.0000011279</td>
<td>2.00</td>
<td>1.00000029598</td>
<td>1.98</td>
<td>2.376×10^{-6}</td>
<td>2.01</td>
</tr>
<tr>
<td>10</td>
<td>1.0000002659</td>
<td>2.08</td>
<td>1.00000008791</td>
<td>1.75</td>
<td>5.810×10^{-6}</td>
<td>2.03</td>
</tr>
<tr>
<td>11</td>
<td>1.000000638</td>
<td>2.06</td>
<td>1.00000002475</td>
<td>1.82</td>
<td>1.433×10^{-7}</td>
<td>2.02</td>
</tr>
<tr>
<td>12</td>
<td>1.000000163</td>
<td>1.97</td>
<td>1.0000000585</td>
<td>2.08</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4. Results for the standard full multigrid algorithm with $f = 1$

<table>
<thead>
<tr>
<th>k</th>
<th>κ_k</th>
<th>σ_k</th>
<th>ϵ_k</th>
<th>e_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.40404781</td>
<td>-</td>
<td>2.513×10^{-1}</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0.40105510</td>
<td>2.46</td>
<td>1.378×10^{-1}</td>
<td>0.866</td>
</tr>
<tr>
<td>3</td>
<td>0.40051009</td>
<td>-2.07</td>
<td>7.465×10^{-2}</td>
<td>0.885</td>
</tr>
<tr>
<td>4</td>
<td>0.40280457</td>
<td>1.62</td>
<td>4.104×10^{-2}</td>
<td>0.863</td>
</tr>
<tr>
<td>5</td>
<td>0.40205736</td>
<td>6.72</td>
<td>2.313×10^{-2}</td>
<td>0.827</td>
</tr>
<tr>
<td>6</td>
<td>0.40205027</td>
<td>-3.50</td>
<td>1.338×10^{-2}</td>
<td>0.790</td>
</tr>
<tr>
<td>7</td>
<td>0.40197036</td>
<td>1.87</td>
<td>7.919×10^{-3}</td>
<td>0.756</td>
</tr>
<tr>
<td>8</td>
<td>0.40194849</td>
<td>1.08</td>
<td>4.776×10^{-3}</td>
<td>0.729</td>
</tr>
<tr>
<td>9</td>
<td>0.40193815</td>
<td>1.29</td>
<td>2.922×10^{-3}</td>
<td>0.709</td>
</tr>
<tr>
<td>10</td>
<td>0.40193393</td>
<td>1.28</td>
<td>1.805×10^{-3}</td>
<td>0.695</td>
</tr>
<tr>
<td>11</td>
<td>0.40193219</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

In the second set of experiments, we solve the Poisson equation

$$-\Delta u = 1 \quad \text{in} \quad \Omega,$$
$$u = 0 \quad \text{on} \quad \partial \Omega. \quad (6.7)$$

In the fourth experiment, we apply the standard full multigrid algorithm to (6.7) on the grids in Figure 3. The error e_k in the energy norm is defined by $e_k = |u_k - u_{k+1}|_{H^1(\Omega)}$. The convergence rates ϵ_k and σ_k are computed by (6.6) and

$$\sigma_k = \log_2 \left(\frac{|\kappa_k - \kappa_{k-1}|}{|\kappa_k - \kappa_{k+1}|} \right). \quad (6.8)$$

The results are tabulated in Table 4.

In the fifth experiment, we apply the full multigrid algorithm I to (6.7) on the grids depicted in Figure 3. The error e_k in energy norm is now defined by $e_k = |w_k - w_{k+1}|_{H^1(\Omega)}$. The convergence rates σ_k and ϵ_k are computed by (6.8) and (6.6) respectively. The results are tabulated in Table 5.
In the sixth experiment, we apply the full multigrid algorithm II to (6.7) on the grids depicted in Figure 4. The error e_k in the energy norm is defined by $e_k = |w_{k+1} - I_k^{k+1} w_k|_{H^1(\Omega)}$. The convergence rates $\sigma_{1,k}$ ($\sigma_{2,k}$) and ϵ_k are computed by (6.8) and (6.6), respectively. The results are tabulated in Table 6.

Experiments 1 and 4 are performed for the sake of comparison with the new algorithms. The convergence rates in the energy norm tend to 2/3 in both experiments. The convergence rates for the stress intensity factors in experiment 4 tend to $1.3 \sim 4/3$. In fact, if we extrapolate from Table 6 the value 0.40193103 for the stress intensity factor and compute the convergence rates again, then the last three rates become 1.29, 1.30 and 1.32. The rates for the stress intensity factors in experiment 1 are also decreasing towards 4/3.

Experiments 2 and 5 show the improvement of the full multigrid algorithm I over the standard full multigrid algorithm. The performance of this algorithm is actually better than the prediction of our theory. Note that in both cases the right-hand side of the Poisson equation is smooth and hence the regular part w belongs to $H^{(7/3) - \epsilon}(\Omega)$ instead of just $H^2(\Omega)$. This higher regularity of w and some sort
Table 7. L^2 convergence of the full multigrid algorithm II with $f = 1$

<table>
<thead>
<tr>
<th>k</th>
<th>μ_k</th>
<th>δ_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.028096 × 10^{-2}</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1.420687 × 10^{-2}</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>7.475676 × 10^{-3}</td>
<td>0.93</td>
</tr>
<tr>
<td>4</td>
<td>3.121328 × 10^{-3}</td>
<td>1.26</td>
</tr>
<tr>
<td>5</td>
<td>7.693137 × 10^{-4}</td>
<td>2.02</td>
</tr>
<tr>
<td>6</td>
<td>2.272332 × 10^{-4}</td>
<td>1.76</td>
</tr>
<tr>
<td>7</td>
<td>5.608381 × 10^{-5}</td>
<td>2.02</td>
</tr>
<tr>
<td>8</td>
<td>1.499267 × 10^{-5}</td>
<td>1.90</td>
</tr>
<tr>
<td>9</td>
<td>3.770565 × 10^{-6}</td>
<td>1.99</td>
</tr>
<tr>
<td>10</td>
<td>9.353645 × 10^{-7}</td>
<td>2.01</td>
</tr>
</tbody>
</table>

of superconvergence result are probably responsible for the better than expected performance of this algorithm.

The convergence rates of both of the stress intensity factors tend to 2 in experiments 3 and 6, as predicted by the theory. The convergence rates in energy norm also tend to 2 in experiment 3, again in agreement with the theory. Note that $|s_1|_{H^1(\Omega)} \sim 1.176$ and $|s_2|_{H^1(\Omega)} \sim 0.768$, and hence the energy norm error $|u - (\kappa_{1,11}s_1 + \kappa_{2,11}s_2 + w_1)|_{H^1(\Omega)}$ in experiment 3 is of order 10^{-7}, whereas in experiment 1 the energy norm error at level 11 is only of order 10^{-3}.

The convergence rates in energy norm in experiment 6 do not approach 2. This may be explained as follows. The order 2 convergence in energy norm depends on a delicate superconvergence result, and the rates computed by (6.6) will tend to the correct order only if there is an asymptotic expansion for the energy norm error instead of just a bound. In experiment 3, the regular part is actually C^∞ and such an asymptotic expansion exists. Hence the order 2 convergence is observed there. On the other hand, the regular part in experiment 6 is only in $H^{3-\epsilon}(\Omega)$ and therefore the asymptotic expansion is absent. Consequently the order 2 convergence in energy norm is not observed.

Note that the estimate (5.10) and the Poincaré inequality imply that we have $O(h^{2-\epsilon})$ L^2-norm convergence for the full multigrid algorithm II. Since the existence of an asymptotic expansion for the L^2-norm error usually requires less regularity, the L^2-norm errors in experiment 6 may still show a convergence rate of 2. We have computed the L^2-norm errors $\mu_k = \|w_k - w_{k+1}\|_{L^2(\Omega)}$ and calculated their rates of convergence $\delta_k = \log_2(\mu_{k-1}/\mu_k)$. The results are displayed in Table 7. It shows that the rate of convergence in the L^2-norm is indeed 2.

7. Concluding remarks

The multigrid methods in this paper use the simplest finite element. They can be easily implemented by modifying existing multigrid codes for the P1 finite element. Since the grids are generated by connecting midpoints, it is also easy to parallelize these algorithms. The extension of these methods to domains with cracks is carried out in [17].

For more regular f, there exist singular function representations (cf. [27], [24], [23], [39]) where the regular part w is also more regular. In such cases multigrid
methods with higher orders of convergence can be developed using higher order elements. The generalization of the results of this paper to higher order elements is carried out in [15].

Since the multigrid methods in this paper compute the regular part of the singular solution, superconvergence results (cf. [61], [54], [19], [35]) which require unrealistic regularity on nonsmooth domains become relevant in this approach. Note that other superconvergence results which are less restrictive than the one based on the “uniform band” condition can also be used as they become available.

These methods can also be applied to elasticity problems, transmission problems, problems with mixed Dirichlet and Neumann boundary conditions and fourth order problems. The only prerequisite is the knowledge of the singular function representation, which may not always be readily available. However, in any applications where the stress intensity factors are sought, the singular function representation must be known, as otherwise the concept of stress intensity factors cannot even be defined. We also point out that there exist many algorithms for the computation of the singular functions (cf. [33], [51], [42], [43], [55], [56], [22]).

ACKNOWLEDGMENTS

The author would like to thank Lars Wahlbin for a discussion of the pollution effect of the corner singularities, Li-yeng Sung for translating some of the Chinese references, and Steve McCormick for many constructive comments.

REFERENCES

32. V. Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points, Tran. Moscow Math. Soc. 16 (1967), 227–313. MR 37:1777
SINGULAR SOLUTIONS AND STRESS INTENSITY FACTORS

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use