## On the convergence of boundary element methods for initial-Neumann problems for the heat equation

HTML articles powered by AMS MathViewer

- by Yang Hongtao PDF
- Math. Comp.
**68**(1999), 547-557 Request permission

## Abstract:

In this paper we study boundary element methods for initial-Neumann problems for the heat equation. Error estimates for some fully discrete methods are established. Numerical examples are presented.## References

- Douglas N. Arnold and Patrick J. Noon,
*Coercivity of the single layer heat potential*, J. Comput. Math.**7**(1989), no. 2, 100–104. China-US Seminar on Boundary Integral and Boundary Element Methods in Physics and Engineering (Xi’an, 1987–88). MR**1016829** - Douglas N. Arnold and Wolfgang L. Wendland,
*On the asymptotic convergence of collocation methods*, Math. Comp.**41**(1983), no. 164, 349–381. MR**717691**, DOI 10.1090/S0025-5718-1983-0717691-6 - Christopher T. H. Baker,
*The numerical treatment of integral equations*, Monographs on Numerical Analysis, Clarendon Press, Oxford, 1977. MR**0467215** - C. A. Brebbia and D. Nardini,
*Solution of parabolic and hyperbolic time dependent problems using boundary elements*, Comput. Math. Appl. Part B**12**(1986), no. 5-6, 1061–1072. MR**871346** - C. A. Brebbia and L. A. Wrobel,
*The solution of parabolic problems using the dual reciprocity boundary element*, Advanced boundary element methods (San Antonio, Tex., 1987) Springer, Berlin, 1988, pp. 55–71. MR**941824** - Martin Costabel,
*Boundary integral operators for the heat equation*, Integral Equations Operator Theory**13**(1990), no. 4, 498–552. MR**1058085**, DOI 10.1007/BF01210400 - M. Costabel, K. Onishi, and W. L. Wendland,
*A boundary element collocation method for the Neumann problem of the heat equation*, Inverse and ill-posed problems (Sankt Wolfgang, 1986) Notes Rep. Math. Sci. Engrg., vol. 4, Academic Press, Boston, MA, 1987, pp. 369–384. MR**1020324** - D. Curran and B.A. Lewis,
*Boundary element method for the solution of the transient diffusion equation in two dimensions*, Appl. Math. Modeling**10**(1986), 107–113. - Frank de Hoog and Richard Weiss,
*On the solution of a Volterra integral equation with a weakly singular kernel*, SIAM J. Math. Anal.**4**(1973), 561–573. MR**337045**, DOI 10.1137/0504049 - Avner Friedman,
*Partial differential equations of parabolic type*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0181836** - Huang Mingyou,
*Finite Element Methods for Evolution Equations*, Shanghai Press of Technology and Science, 1983. - Li Ronghua and Feng Guocheng,
*The Numerical Treatment for Differential Equations*, The People’s Education Press, 1980. - Peter Linz,
*Analytical and numerical methods for Volterra equations*, SIAM Studies in Applied Mathematics, vol. 7, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1985. MR**796318**, DOI 10.1137/1.9781611970852 - J.-L. Lions and E. Magenes,
*Non-homogeneous boundary value problems and applications. Vol. I*, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR**0350177** - E. A. McIntyre Jr.,
*Boundary integral solutions of the heat equation*, Math. Comp.**46**(1986), no. 173, 71–79, S1–S14. MR**815832**, DOI 10.1090/S0025-5718-1986-0815832-6 - J.-C. Nédélec,
*Curved finite element methods for the solution of singular integral equations on surfaces in $R^{3}$*, Comput. Methods Appl. Mech. Engrg.**8**(1976), no. 1, 61–80. MR**455503**, DOI 10.1016/0045-7825(76)90053-0 - P.J. Noon,
*The single layer heat potential and Galerkin boundary element methods for the heat equation*, Ph.D. thesis, University of Maryland, U.S.A., 1988 - Kazuei Onishi,
*Convergence in the boundary element method for heat equation*, TRU Math.**17**(1981), no. 2, 213–225. MR**648929** - K. Onishi,
*Boundary element method for time dependent heat equation*, Proceedings of the 1st Japan-China Symposium on Boundary Element Methods (ed. by M. Takana and Q. Du). - Fiorella Sgallari,
*A weak formulation of boundary integral equations for time dependent parabolic problems*, Appl. Math. Modelling**9**(1985), no. 4, 295–301. MR**801045**, DOI 10.1016/0307-904X(85)90068-X - Yang Hongtao,
*A new analysis of Volterra-Fredholm boundary integral equations of the second kind*, Northeast. Math. J. 13 (3) (1997), 325–334.

## Additional Information

**Yang Hongtao**- Affiliation: Department of Mathematics, Jilin University, Changchun, 130023, China
- Received by editor(s): January 4, 1994
- Received by editor(s) in revised form: January 26, 1996, and February 18, 1997
- Additional Notes: This work was supported by the National Natural Science Foundation of China.
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp.
**68**(1999), 547-557 - MSC (1991): Primary 65M30; Secondary 65R20
- DOI: https://doi.org/10.1090/S0025-5718-99-01022-4
- MathSciNet review: 1609650