Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Convergence analysis of domain decomposition algorithms with full overlapping for the advection-diffusion problems
HTML articles powered by AMS MathViewer

by P. Le Tallec and M. D. Tidriri PDF
Math. Comp. 68 (1999), 585-606 Request permission

Abstract:

The aim of this paper is to study the convergence properties of a time marching algorithm solving advection-diffusion problems on two domains using incompatible discretizations. The basic algorithm is first described, and theoretical and numerical results that illustrate its convergence properties are then presented.
References
  • J.-F. Bourgat, P. Le Tallec and M. D. Tidriri, Coupling Boltzman and Navier-Stokes equations by friction, J. Comp. Phy. 127, 227–245 (1996).
  • M. O. Bristeau, R. Glowinski, L. Dutto, J. Périaux, and G. Rogé, Compressible viscous flow calculations using compatible finite element approximations, Internat. J. Numer. Methods Fluids 11 (1990), no. 6, 719–749. The Seventh International Conference on Finite Elements in Flow Problems (Huntsville, AL, 1989). MR 1076434, DOI 10.1002/fld.1650110603
  • Roland Glowinski, Gene H. Golub, Gérard A. Meurant, and Jacques Périaux (eds.), First International Symposium on Domain Decomposition Methods for Partial Differential Equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. MR 972509
  • Tony F. Chan, Roland Glowinski, Jacques Périaux, and Olof B. Widlund (eds.), Domain decomposition methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. MR 991999
  • Tony F. Chan, Roland Glowinski, Jacques Périaux, and Olof B. Widlund (eds.), Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. MR 1064333
  • Roland Glowinski, Yuri A. Kuznetsov, Gérard Meurant, Jacques Périaux, and Olof B. Widlund (eds.), Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1991. MR 1106444
  • David E. Keyes, Tony F. Chan, Gérard Meurant, Jeffrey S. Scroggs, and Robert G. Voigt (eds.), Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1189558
  • Alfio Quarteroni, Jacques Périaux, Yuri A. Kuznetsov, and Olof B. Widlund (eds.), Domain decomposition methods in science and engineering, Contemporary Mathematics, vol. 157, American Mathematical Society, Providence, RI, 1994. MR 1262599, DOI 10.1090/conm/157
  • Y. Achdou and O. Pironneau, A fast solver for Navier-Stokes equations in the laminar regime using mortar finite element and boundary element methods, Technical Report 93-277 (Centre de Mathématiques Appliquées, Ecole Polytechnique, Paris, 1993).
  • C. Canuto and A. Russo, On the elliptic-hyperbolic coupling. I. The advection-diffusion equation via the $\chi$-formulation, Math. Models Methods Appl. Sci. 3 (1993), no. 2, 145–170. MR 1212937, DOI 10.1142/S0218202593000096
  • Cercignani, C., Theory and application of the Boltzmann equation, Springer, (1988).
  • P. Le Tallec and M. D. Tidriri, Convergence Analysis of Domain Decomposition Algorithms with Full Overlapping for the Advection-Diffusion Problems. Rapport de recherche INRIA no 2435, Octobre 1994 (57 pages).
  • P. Le Tallec and M. D. Tidriri, Analysis of the explicit time marching algorithm. ICASE Report No. 96-45.
  • L. D. Marini and A. Quarteroni, An iterative procedure for domain decomposition methods: a finite element approach, First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987) SIAM, Philadelphia, PA, 1988, pp. 129–143. MR 972515
  • L. D. Marini and A. Quarteroni, A relaxation procedure for domain decomposition methods using finite elements, Numer. Math. 55 (1989), no. 5, 575–598. MR 998911, DOI 10.1007/BF01398917
  • A. Quarteroni, G. Sacchi Landriani and A Valli, Coupling of Viscous and Inviscid Stokes Equations via a Domain Decomposition Method for Finite Elements, Technical report UTM89-287 (Dipartimento di Mathematica, Universita degli Studi di Trento, 1989).
  • Ph. Rostand, B. Stoufflet, Finite volume Galerkin methods for viscous gas dynamics, Rapport de recherche INRIA no 863, Juillet 1988.
  • Moulay Driss Tidriri, Couplage d’approximations et de modèles de types différents dans le calcul d’écoulements externes, Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt, 1992 (French, with English and French summaries). Thèse, Université de Paris IX (Paris-Dauphine), Paris, 1992. MR 1346308
  • M. D. Tidriri, Domain Decomposition for Incompatible Nonlinear Models. INRIA Research Report RR-2378, October 1994.
  • M. D. Tidriri, Domain decomposition for compressible Navier-Stokes equations with different discretizations and formulations. J. Comp. Phy. 119, 271-282 (1995).
  • Y. A. Kuznetsov, Overlapping Domain Decomposition Methods for Parabolic Problems. In [A. Quarteroni (ed), Proceedings of the Sixth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Como, June 15–19, 1992, Contemp. Math. 157 (AMS, Providence, 1994)].
  • H. Blum, S. Lisky, and R. Rannacher, A domain splitting algorithm for parabolic problems, Computing 49 (1992), no. 1, 11–23 (English, with English and German summaries). MR 1182439, DOI 10.1007/BF02238647
Similar Articles
Additional Information
  • P. Le Tallec
  • Affiliation: INRIA, Domaine de Voluceau Rocquencourt, B.P. 105, Le Chesnay Cedex, France
  • Email: Partrick.LeTallec@inria.fr
  • M. D. Tidriri
  • Affiliation: Iowa State University, Department of Mathematics, 400 Carver Hall, Ames, IA 50011
  • Email: tidriri@iastate.edu
  • Received by editor(s): January 11, 1995
  • Received by editor(s) in revised form: April 5, 1996, and November 21, 1996
  • Additional Notes: This work has been supported by the Hermes Research program under grant number RDAN 86.1/3. The second author was also supported by the National Science Foundation under contract number ECS-8957475 and by the United Technologies Research Center while he was at Yale University.
  • © Copyright 1999 American Mathematical Society
  • Journal: Math. Comp. 68 (1999), 585-606
  • MSC (1991): Primary 65Jxx, 65M12, 65C20, 76Nxx, 82Cxx
  • DOI: https://doi.org/10.1090/S0025-5718-99-01030-3
  • MathSciNet review: 1613715