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ZETA FUNCTIONS OF A CLASS OF ELLIPTIC CURVES
OVER A RATIONAL FUNCTION FIELD

OF CHARACTERISTIC TWO

ERNST-ULRICH GEKELER, RITA LEITL, AND BODO WACK

Abstract. We show how to calculate the zeta functions and the orders |X|
of Tate-Shafarevich groups of the elliptic curves with equation Y 2 + XY =
X3 + αX2 + const · T−k over the rational function field Fq(T ), where q is a
power of 2. In the range q = 2, k ≤ 37, α ∈ F2[T−1] odd of degree ≤ 19,
the largest values obtained for |X| are 472 (one case), 392 (one case) and 272

(three cases).
We observe and discuss a remarkable pattern for the distributions of signs in

the functional equation and of fudge factors at places of bad reduction. These
imply strong restrictions on the precise form of the Langlands correspondence
for GL(2) over local or global fields of characteristic two.

Introduction

The behavior of elliptic curves in characteristic two deviates significantly from
that of elliptic curves in other characteristics. The main difference (except that, for
some questions, the multiplicative group of the ground field has to be replaced by
its additive group) stems from the facts that pencils of elliptic curves in character-
istic two admit arbitrarily high ramification (a property shared by elliptic curves
in characteristic three), and that quadratic twists may arbitrarily enlarge conduc-
tors (a property peculiar to characteristic two). The aim of the present paper is
to provide some empirical material about the simplest case of such a situation,
namely, that of an elliptic curve E over K = Fq(T ) (q is a power of 2) with its
ramification essentially concentrated in the place v that corresponds to T = 0.
In order to have a non-constant j-invariant, we further assume that E has (split)
multiplicative reduction at yet another place w. We deal with the case where w
is the place at infinity. These curves and their conductors have been classified in
[4], which led to a certain normal form E = Eα,β . We first express the ingredients
of the Birch/Swinnerton-Dyer conjecture for E/K through quantities that may be
computed mechanically from this normal form (formula (2.12)). Then we sketch
(section 3) an algorithm that allows fast calculation of the zeta functions of Eα,β

in a wide range of the parameters α and β. We finally present numerical results
(≈ 20 000 curves) over K = F2(T ) and comment on the observed distribution of
fudge factors at the place v, signs in the functional equation and zero orders at
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824 ERNST-ULRICH GEKELER, RITA LEITL, AND BODO WACK

the critical point. The calculations were performed on a SGI Challenge L with 120
MIPS. The marginal computer time needed to determine the zeta function of an
elliptic curve E/K with total degree 41 of its conductor was about 300 seconds.

1. The curves Eα,β

We let Fq be a finite field with q = 2e elements, A = Fq[T ] the polynomial
ring and K = Fq(T ) the rational function field in an indeterminate T over Fq.
Places v of K are identified in the usual way with elements of the set {x ∈ A |
x monic, prime} ∪ {∞}. We briefly write “v = T ” (or also “v = 0”) and “v = ∞”
for the places corresponding to x = T and ∞, respectively.

Let E/K be an elliptic curve. If its invariant j(E) is non-zero, an equation for
E may be written in short Weierstraß form (SWF):

Y 2 + XY = X3 + a2X
2 + a6(1.1)

with discriminant ∆ = a6 and j(E) = a−1
6 . We are interested in such E/K whose

conductor cond(E) is essentially concentrated in one rational place v of K, where,
without loss of generality, v = 0. Since this assumption, by an easy argument ([4],
Prop. 2.1), implies that E is a twisted constant curve (i.e., j(E) ∈ Fq), we admit
one further rational place w 6= v of K (without loss of generality, w = ∞) where E
has split multiplicative reduction. Our objects of study are therefore elliptic curves
E/K subject to the condition:

1.2. E has good reduction off {0,∞} and split multiplicative reduction at v = ∞.
The conductor cond(E) has then the form

cond(E) = (0)f · (∞).(1.3)

But note that, unlike the common cases of “good” characteristics, the exponential
conductor f = f(E/K0) of E over K0 = Fq((T )) may be arbitrarily large. Some
of the features to follow are therefore peculiar to characteristic two (with some
analogous phenomena in characteristic three), and do not have a counterpart in
other characteristics.

The next two results are proved in [4]. Here and in the sequel, an “odd” poly-
nomial is a polynomial all of whose exponents are odd.

1.4. Theorem. Condition (1.2) on E/K is equivalent to the following:
(1.2′) E may be written in SWF

Eα,β : Y 2 + XY = X3 + αX2 + β,

where α ∈ Fq[T−1] is an odd polynomial and β = c · T−k with c ∈ F∗q and k ∈ N.
Moreover, up to K-isogeny, the exponent k may be chosen odd.

1.5. Theorem. Let Eα,β/K be an elliptic curve as above. Suppose that α ∈
Fq[T−1] is an odd polynomial and β = c · T−k with c ∈ F∗q and k ∈ N odd.
Then f = f(Eα,β/K0) is given by

f =

{
k + 2 , 2 · deg α < k,

2 · deg α + 2 , 2 · deg α > k.
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1.6. Next, let L be any field of characteristic two. The following sets correspond
bijectively to each other:

(a) Separable extensions L′/L of degree ≤ 2;
(b) Characters χ of Gal(Lsep/L) with χ2 = 1;
(c) L/℘(L), where ℘ : L −→ L is the additive map x 7−→ x2 + x.

1.7. Let Lα = L(s) with ℘(s) = α ∈ L be a separable quadratic extension. If E/L
is given in SWF

E : Y 2 + XY = X3 + a2X
2 + a6 ,

then its twist by Lα (or by the associated character χ, or by α) is

Eα : Y 2 + XY = X3 + (a2 + α)X2 + a6 .

In particular, the curve Eα,β = (E0,β)α of (1.4) is the twist of E0,β by α or Kα.

2. The zeta function and the Birch/Swinnerton-Dyer conjecture

Let S be an indeterminate, and for a place v of K, put Sv = Sdeg v and qv =
qdeg v = cardinality |Fv| of the residue class field Fv. The Euler factor of E = Eα,β

(subject always to (1.2′)) at v is

Pv(S) =


1 , v = 0,

(1− S)−1 , v = ∞,

(1− c(v)Sv + qvS
2
v)−1 , v 6= 0,∞ ,

where c(v) = qv + 1 − a(v), and a(v) is the number |E(Fv)| of rational points of
the reduction of E at v. The Z-function Z(E/K, S) is

Z(E/K, S) =
∏

v a place of K

Pv(S) ,(2.1)

a priori a formal power series in S. Finally, the complex-valued zeta function of
E is ζ(E/K, s) := Z(E/K, q−s). The following is the specialization of well-known
facts to our case (see [3] and [10], Thm. 4):

2.2. Theorem. Z(E/K, S) is actually a polynomial of degree g = f − 3 in S and,
with a suitable sign w = w(E/K) ∈ {±1}, satisfies the functional equation

Z(E/K, S) = w(qS)g Z(E/K, q−2S−1) . �
(Here f is the exponent of cond(E) at v = 0 given by (1.5), and g = f − 3 =

deg cond(E)− 4 as in [10].)
Let r = r(E/K) be the rank of the finitely generated abelian group E(K) and

ran = ran(E/K) the zero order of Z(E/K, S) at S = q−1 (or of ζ(E/K, s) at s = 1).
It has been proven in [11]that always

r ≤ ran .(2.3)

The Birch/Swinnerton-Dyer conjecture (or Artin/Tate conjecture: [11], conjectures
B, C; [7], p. 117; the two are equivalent in our case: [7], p. 371) states that we have
in fact equality and, moreover, the leading term of ζ(E/K, s) at s = 1 is given by

γ(E/K) lim
s→1

ζ(E/K, s)
(s− 1)r

=
|X(E/K)| | det 〈 . 〉|

|E(K)tor|2 .(2.4)

The ingredients of (2.4) are as follows: E(K)tor is the torsion subgroup of E(K),
det〈 . 〉 is the determinant (well-defined up to sign) of the height pairing on E(K)
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826 ERNST-ULRICH GEKELER, RITA LEITL, AND BODO WACK

mod torsion, X(E/K) is the Tate-Shafarevich group, and γ(E/K) is a comparison
factor described in [7], p. 115 (essentially, the quotient L∗S/LS of loc. cit.). It will
be determined below.

The comparison factor. By definition, γ(E/K) results from integrating Néron
differentials on E against normalized Haar measures at the v-adic (v = 0,∞) com-
pletions of K. Recall that, as A = Fq[T ] is principal, E has a globally minimal
model E over A. Let ω be the Néron differential associated to E and ω′ the Néron
differential associated to a minimal model E ′ at ∞. Then ω′ = uω with some
u ∈ K∞ with normalized absolute value |u|∞ > 1. We call |u|∞ the discrepancy of
E. Note that u is just the parameter of the coordinate change between E and E ′
(see [12], 2.1).

Going through the definitions of [7], p. 115, we get

2.5. Proposition. Let E/K be an elliptic curve subject to (1.2). The comparison
factor in formula (2.4) is

γ(E/K) =
|u|∞

q · c0 · c∞ ,

where |u|∞ is the discrepancy and the cv = cv(E/K) are the fudge factors at the
two places v = 0,∞ of bad reduction of E.

The cv are discussed in [12]. They are determined by applying Tate’s algorithm.
Now let E again be one of the curves Eα,β , where α and β = c · T−k are as in

(1.2′). Then we know a priori that:

(2.6) c∞ = k, since E/K∞ is a Tate curve with v∞(j(E)) = −k.

(2.7) c0 ∈ {1, 2, 3, 4}, since E has additive reduction at v = 0.
The next result follows from a detailed analysis of Tate’s algorithm applied to

Eα,β .

2.8. Theorem ([6]). Let α ∈ Fq[T−1] be an odd polynomial of degree d and β =
c · T−k with k odd, and write k = 6l − m with l ∈ N and m ∈ {1, 3, 5}. Put
l := max{l, d+1

2 }. Then

Y 2 + T lXY = X3 + T 2lαX2 + T 6lβ(i)

is a globally minimal equation for E = Eα,β over A = Fq[T ].
(ii) The Kodaira type of E at v = 0 is II, I∗0, I∗ν (some ν ∈ N) or II∗.

2.9. Remark. The precise description of the Kodaira types, irrelevant for our
present purposes, depends on complicated case considerations on (m, α, β). It is
carried out in detail in [6]. We also have some so far incomplete results on c0, but
in general we need to calculate it through the algorithm. The results for q = 2 are
tabulated in (4.8).

2.10. Corollary. With the above notation, the discrepancy of E is ql.

Proof. We have u = T l and |u|∞ = ql.

2.11. Corollary. The fudge factor is 1, 2 or 4.

Proof. These are the only fudge factors admitted by our Kodaira types.
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Combining the preceding results, the BSD conjecture (2.4) for our curves Eα,β

with k = v∞(β) odd reads

ql−1

c0 · k lim
s→1

ζ(E/K, s)
(s− 1)r

=
|X(E/K)| | det 〈 . 〉|

|E(K)tor|2 .(2.12)

We should mention that its truth in full strength would be a consequence of the
conjectured equality r = ran in (2.3) ([7], Cor. 9.7, p. 371). Hence if ζ(E/K, s)
doesn’t vanish at s = 1, the formula

ql−1

c0 · k ζ(E/K, 1) =
|X(E/K)|
|E(K)tor|2(2.13)

is valid unconditionally, and yields an efficient method to calculate |X(E/K)|.

3. Computation of Z(E/K, S)

Here we describe how to efficiently calculate Z(E/K, S) for all the curves E =
Eα,β over K with conductor cond(E) = (0)f · (∞) and f less than or equal to some
bound fmax depending on the size of the machine available.

Without restriction (1.4), we assume that k = v∞(β) is odd. Let g = f − 3 be
the degree of Z(E/K, S) =

∑
cnSn.

First step. From the functional equation, we have

cg−n = w(E/K)qg−2ncn .(3.1)

It therefore suffices to calculate the cn for n ≤ g := [g/2] + 1, provided that
cg doesn’t vanish. Otherwise (which in practice occurs very rarely), we have to
calculate the first non-vanishing cn with n > g, or use some other method (see
(4.2)) to determine the sign w(E/K).

Second step. For a prime v 6= 0 of A = Fq[T ] (i.e., an irreducible monic polyno-
mial v 6= T ) and i ∈ N, put

a(v, i) := |E(Fvi)| = number of rational points of E over

the extension of degree i of Fv = A/(v).
(3.2)

We finally let c be the multiplicative function on monics in A vanishing on multiples
of T and given on prime powers vi (v 6= T ) by

c(vi) = qi
v + 1− a(v, i) .(3.3)

The cn of (3.1) are then given by

cn =
∑

x∈A monic, deg x=n

c(x).(3.4)

From the theory of elliptic curves over finite fields, we have the well-known recur-
sions (v 6= T prime, i ≥ 3)

c(v2) = c(v)2 − 2qv,
c(vi) = c(v)c(vi−1)− qvc(vi−2) ,

(3.5)
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828 ERNST-ULRICH GEKELER, RITA LEITL, AND BODO WACK

from which the a(v, i) may be determined. Let D be the logarithmic derivative
operator f(S) 7−→ Df(S) = S · f ′(S)

f(S) on Z[[S]]. After a quick calculation, (2.1)
translates to

DZ(E/K, S) =
∑
n≥1

[q2n −
∑
d|n

d
∑

v∈A monic, prime
of degree d, v 6=T

a(v, n/d)]Sn ,(3.6)

which is considerably simpler to evaluate than (2.1) combined directly with (3.3)–
(3.5). The coefficients c̃n of DZ(E/K, S) yield the cn through

cn =
1
n

∑
0≤i<n

cic̃n−i (n ≥ 1), c0 = 1 .(3.7)

(We are confident that the present c0 = 1 is not confused with the local fudge factor
at v = 0 discussed in section two.)

Third step. We are now reduced to calculating the a(v) = a(v, 1) (or equivalently
the c(v)) for places v 6= T of degree up to g. Let E = E0,β and E′ = Eα,β with
α, β subject to (1.2’). If c(x), c′(x) denote the Fourier coefficients (3.3) associated
with E and E′, respectively, then

c′(x) = χα(x)c(x) ,(3.8)

where χα : A −→ C is the Dirichlet character attached to the quadratic extension
Kα/K. It may be described as follows: If α has odd degree d, then Kα/K has
conductor (T d+1) and splits at∞ (e.g., [4], sect. 1). Hence Gal(Kα/K) is a quotient
of (A/(T d+1))∗/F∗q and χα is the composition (A/(T d+1))∗ −→ Gal(Kα/K) ∼=
{±1}, considered as a function on A in the usual fashion. For a monic prime v 6= T
in A, we have

χα(v) = (−1)[α,v),(3.9)

where [α, v) = TrFq

F2
Res0(αdv

v ) ∈ F2 is the Artin-Schreier symbol ([8], p. 221) at
the place w = 0 = (T ).

3.10. Example. Let q = 2, v =
∑

viT
i prime. Then [T−1, v) = v1, [T−3, v) =

v1 + v1v2 + v3.

Since [., .) is bilinear, it suffices to evaluate and store the Fourier coefficients c(v)
(v prime) for E = E0,β and the values χα(v) for α = const · T−i (i odd) instead
of the coefficients c′(v) for E′ = Eα,β and all the v and α. Moreover, the defining
equation for E0,β is particularly simple to handle (see step five).

Fourth step. We still have to determine a(v) = |E0,β(Fv)| for all the places v 6=
(T ) of degree d ≤ g = [g/2] + 1, which involves calculations in ≈ qg/g fields of
size up to qg. We therefore eliminate the quantity v from our considerations. For
each d ≤ g, we choose, by means of a minimal equation, a standard field Ld of
degree d over Fq. The different v’s of degree d then correspond to the orbits of
length d under the Galois action in Ld. If b ∈ Ld is the image of β ∈ A[T−1] under
A[T−1] −→ Fv = A/(v) ∼= Ld, then

a(v) = number of solutions over Ld

(including the infinite one) of Y 2 + XY = X3 + b
= |E0,b(Ld)| .

(3.11)
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Fifth step. The following simple lemma allows to separate variables when com-
puting |E0,b(Ld)|.
3.12. Lemma. |E0,b(Ld)| = 2 + 2 |{x ∈ L∗d | x + bx−2 ∈ ℘(Ld)}|.
Proof. For x ∈ L∗d we have ℘(Ld) = {y2 + y | y ∈ Ld} = x−2{y2 + xy | y ∈ Ld}.
Hence {y2+xy | y ∈ Ld} = x2{y2+y | y ∈ Ld} and x3+b ∈ {y2+xy | y ∈ Ld} ⇔
x+bx−2 ∈ ℘(Ld) whenever 0 6= x ∈ Ld. For each such x, there exist two Ld-rational
points (x, y) of E0,b, and E0,b(Ld) = {(x, y) | x 6= 0} ∪ {(0,

√
b),∞}.

The above suggests that we should mark and store for each Ld the qd/2 elements
of the form y2 +y. The remaining determination of |E0,b(Ld)| is then achieved with
qd − 1 evaluations of f(x) = x + bx−2.

Let dmax be the largest integer d such that we can efficiently perform the neces-
sary calculations in Ld (which, in our approach, requires the storage of a discrete log-
arithm and of the value set of the ℘-function on Ld). Except for a very small number
of curves Eα,β with lacunary Z-function (see (3.1)), our algorithm will determine
Z(E/K, S) for all the curves E = Eα,β with g = deg Z(E/K, S) ≤ 2dmax − 1, i.e.,
f ≤ fmax = 2dmax + 2, or finally with

max{k, 2 degT−1 α} ≤ 2dmax (see (1.5)).(3.13)

The computer time needed to perform steps one to four is small compared to step
five, i.e., the calculation of all the |E0,b(Ld)| for b ∈ Ld, 1 ≤ d ≤ dmax. Hence,
for practical purposes, the total computer time to determine Z(E/K, S) for all the
E = Eα,β in the above range is O(q2dmax).

4. Numerical results

We list the results on Z(E/K, S) obtained from our algorithm, for q = 2 and
dmax = 19. Hence E = Eα,β , where α ∈ F2[T−1] is an odd polynomial of degree
≤ 19 and β = T−k with k ≤ 37, where by Theorem 1.4, we suppose without loss of
generality that k is odd. By [4], 5.4 and 5.5, we have

4.1. The resulting curves Eα,k := Eα,T−k are all non-isogeneous, and

Eα,k(F2(T ))tor = 0 .

The algorithm as described delivered Z(E/K, S) in 19 448 cases from a total number
of 19 × 210 = 19 456 pairs (α, k), i.e., in these cases, the sign w(E/K) in the
functional equation came out. Of the remaining 8 cases, we could decide w(E/K)
for 7 pairs (α, k), mainly through arguments based on the next observation, which
follows from (2.13) and (4.1):

4.2. If ζ(E/K, 1) = Z(E/K, 1/2) 6= 0, then

2l−1

c0 · kZ(E/K, 1/2) = |X(E/K)|
is the square of a natural number.

The case (α, k) = (0, 25) resisted and needs a more detailed analysis. Based on
(4.7), we suspect here the “+” sign, which gives the order of zero 2 at the critical
point S = q−1 = 1/2. That case is counted in Table 4.3 and Observation 4.7 with
the proposed sign and zero order. The four curves with ran = 4 have parameters
(α, k) = (T−11+T−7+T−3+T−1, 31), (0, 33), (T−13+T−11+T−7+T−3+T−1, 35)
and (T−15 + T−7, 37).
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Table 4.3. (zero orders ran of Z(E/K, S) at S = 1/2)

# cases ran

5 799 0
13 325 1

288 2
40 3
4 4
0 ≥ 5

19 456

We further observed empirically:

4.4. Z(E/K, 1/2) 6= 0, i.e., ran = r = 0 whenever deg α = k, and ran = 1
whenever deg α > k.

Table 4.5. (values of |X(E/K)| if Z(E/K, 1/2) 6= 0)

# cases |X(E/K)| # cases |X(E/K)|
2 658 12 91 112

154 22 44 132

1 494 32 28 152

50 42 18 172

648 52 11 192

11 62 9 212

367 72 5 252

2 82 3 272

202 92 1 392

2 102 1 472

5 799

The value |X| = 392 is obtained for

(α, k) = (T−19 + T−17 + T−15 + T−9 + T−7 + T−5 + T−1, 21),

the value 472 for

(α, k) = (T−19 + T−17 + T−15 + T−13 + T−7 + T−5 + T−3, 21).

The prime l = 47 seems to be the largest prime divisor of some |X(E/K)|
documented in the literature which is unequal to the characteristic p. For l = p,
see e.g., [9].

The Z-function for the curve E = E0,25 with so far undetermined sign w =
w(E/K) is

Z(E0,25/K, S) = (1 −R)(1− wR5)(4.6)

with R := (2S)4, which has ran = 2 if w = 1, as we suspect, and ran = 1 if w = −1.
The respective behaviors of signs w(E/K) in the functional equation and of the

fudge factors c0(E/K) at v = 0 (see (2.7)) seem to coincide in some sense. Define
for pairs (α, k) as above the following segments (where “deg” is the degree of α in
T−1):
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(segment 1) α = 0,
(segment 2) 1 ≤ deg α ≤ k/3,
(segment 3) k/3 < deg α ≤ k/2,
(segment 4) k/2 < deg α < k,
(segment 5) deg α = k,
(segment 6) deg α > k.

Depending on the different segments, we made the empirical observations listed
below.

4.7 Observations. (E = Eα,k, w = w(E/K), ran = ran(E/K)):
(1)

(α, k) in segment 1 ⇒ w =

{
1 if k ≡ 1, 7 (mod 8)
−1 if k ≡ 3, 5 (mod 8)

(2)

(α, k) in segment 2 ⇒ w(E/K) =


w(E0,k/K) if k ≡ 1, 5 (mod 6)
or k ≡ 3 (mod 6) and deg α < k/3
−w(E0,k/K), if k ≡ 3 (mod 6)
and deg α = k/3

(3) (α, k) in segment 3. The fudge factor c0(Eα,k/K) is 2 or 4. For each pair
(d, k) with k/3 < d ≤ k/2 there exists a permutation σd,k of {±1} such that
for all the α with deg α = d, we have

w(Eα,k/K) = σd,k(1) ⇔ c0(Eα,k/K) = 2 .

In other words: The distribution of signs w follows the same pattern as c0, as
long as (deg α, k) is constant.

(4) (α, k) in segment 4. Then c0 = c0(E/K) ∈ {2, 4} and

c0 = 2 ⇔ w = 1 ⇒ ran = 0,
c0 = 4 ⇔ w = −1 ⇒ ran = 1.

(5) (α, k) in segment 5 ⇒ w = 1, ran = 0.
(6) (α, k) in segment 6 ⇒ w = −1, ran = 1.

These should be contrasted with the following proved facts on Kodaira types and
fudge factors.

4.8. Proposition. Let (α, k) be an odd polynomial in F2[T−1], an odd natural
number, respectively. The Kodaira type and fudge factor c0 of Eα,k at v = 0 are
given by:

(α, k) in Kodaira type c0(Eα,k/K)
segments 1, 2, k ≡ 1 (mod 6) II∗ 1

k ≡ 3 (mod 6), deg α < k/3 I∗0 2
deg α = k/3 I∗0 1

k ≡ 5 (mod 6) II 1
segments 3, 4 I∗ν (ν > 0) 2, 4
segment 5 I∗ν (ν > 0) 2
segment 6 I∗ν (ν > 0) 4
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Proof. Analysis of Tate’s algorithm. We omit the details.

5. Comments

Observations (4.4) and (4.7) suggest, in view of (4.1), that for E = Eα,k, K =
F2(T ) we have

E(K) = 0 if (α, k) in segment 5, i.e., deg α = k,
E(K) ∼= Z if (α, k) in segment 6, i.e., deg α > k.

(5.1)

Is there a uniform proof for these “facts”? In particular, can we prescribe rational
points on E if deg α > k, and show that E has none if deg α = k?

5.2. The missing sign w(E/K) in the functional equation is an essentially local
invariant of E in v = 0; see below. Though we see no connection a priori between
w(E/K) and c0(E/K), there must be a link, which has to be revealed. We sketch
how this problem could be approached. Let K0 = Fq((T )) be the completion of
K at v = 0. To E/K0 there correspond an automorphic representation σE of
GL(2, K0) and also a representation σ′E of H∗, where H/K0 is the central division
algebra of dimension 4 (see [5], [2], [13]). E being defined over K = Fq(T ) and
subject to (1.2), the sign w(E/K) is nothing else than the root number (e.g., [1], p.
22) of σ′E . Since E  σ′E is compatible with twists (1.7) and the behavior of root
numbers under twists is easy to describe ([1], p. 28), we are reduced to determining
the representation σ′E of H∗ attached to E = E0,k (if q = 2), or, more generally,
of E0,β , β = const · T−k. Thus we propose to study for arbitrary local fields K0 of
characteristic two the Langlands-Shimura map

LS: {j ∈ K∗
0 | 0 < |j| < 1} −→


irreducible admissible
representations of H∗ with
trivial central character

 ,

j 7−→ σ′E , where E = E0,j−1 .

Note that the Langlands and Langlands-Shimura correspondences don’t give more
than the mere existence of LS, whose properties seem to be largely unknown. Our
empirical results (4.7) imply certain restrictions for LS; among others, they suggest
that the representations σ′E with E = E0,β (or rather E = Eα,β with (α, β) “in
segments 1 or 2”) are distinguished among all the representations σ′E .
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