Error estimates for scattered data interpolation on spheres
HTML articles powered by AMS MathViewer
- by Kurt Jetter, Joachim Stöckler and Joseph D. Ward PDF
- Math. Comp. 68 (1999), 733-747 Request permission
Abstract:
We study Sobolev type estimates for the approximation order resulting from using strictly positive definite kernels to do interpolation on the $n$-sphere. The interpolation knots are scattered. Our approach partly follows the general theory of Golomb and Weinberger and related estimates. These error estimates are then based on series expansions of smooth functions in terms of spherical harmonics. The Markov inequality for spherical harmonics is essential to our analysis and is used in order to find lower bounds for certain sampling operators on spaces of spherical harmonics.References
- L. Bos, N. Levenberg, P. Milman, and B. A. Taylor, Tangential Markov inequalities characterize algebraic submanifolds of $\textbf {R}^N$, Indiana Univ. Math. J. 44 (1995), no. 1, 115–138. MR 1336434, DOI 10.1512/iumj.1995.44.1980
- E. W. Cheney, Approximation using positive definite functions, Approximation theory VIII, Vol. 1 (College Station, TX, 1995) Ser. Approx. Decompos., vol. 6, World Sci. Publ., River Edge, NJ, 1995, pp. 145–168. MR 1471725
- Stephan Dahlke, Wolfgang Dahmen, Ilona Weinreich, and Eberhard Schmitt, Multiresolution analysis and wavelets on $S^2$ and $S^3$, Numer. Funct. Anal. Optim. 16 (1995), no. 1-2, 19–41. MR 1322896, DOI 10.1080/01630569508816605
- Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635
- Jean Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, Constructive theory of functions of several variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1976) Lecture Notes in Math., Vol. 571, Springer, Berlin, 1977, pp. 85–100. MR 0493110
- N. Dyn, F. J. Narcowich, and J. D. Ward, Variational principles and Sobolev-type estimates for generalized interpolation on a Riemannian manifold, Constr. Approx. (to appear).
- W. Freeden, On spherical spline interpolation and approximation, Math. Methods Appl. Sci. 3 (1981), no. 4, 551–575. MR 657073, DOI 10.1002/mma.1670030139
- W. Freeden and E. W. Grafarend, Mathematische Methoden der Geodäsie, Oberwolfach Conference Report 41/1995.
- W. Freeden and U. Windheuser, Combined spherical harmonic and wavelet expansion—a future concept in Earth’s gravitational determination, Appl. Comput. Harmon. Anal. 4 (1997), no. 1, 1–37. MR 1429676, DOI 10.1006/acha.1996.0192
- Michael Golomb and Hans F. Weinberger, Optimal approximation and error bounds, On numerical approximation. Proceedings of a Symposium, Madison, April 21-23, 1958, Publication of the Mathematics Research Center, U.S. Army, the University of Wisconsin, no. 1, University of Wisconsin Press, Madison, Wis., 1959, pp. 117–190. Edited by R. E. Langer. MR 0121970
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 0350177
- W. R. Madych and S. A. Nelson, Multivariate interpolation: a variational theory, manuscript, 1983.
- U. Maier and J. Fliege, Charge distribution of points on the sphere and corresponding cubature formulae, Multivariate Approximation: Recent Trends and Results (W. Haußmann, K. Jetter and M. Reimer, eds.), Mathematical Research, vol. 101, Akademie-Verlag, Berlin, 1997, pp. 147–159.
- Claus Müller, Spherical harmonics, Lecture Notes in Mathematics, vol. 17, Springer-Verlag, Berlin-New York, 1966. MR 0199449
- Francis J. Narcowich, Generalized Hermite interpolation and positive definite kernels on a Riemannian manifold, J. Math. Anal. Appl. 190 (1995), no. 1, 165–193. MR 1314111, DOI 10.1006/jmaa.1995.1069
- Francis J. Narcowich and Joseph D. Ward, Nonstationary wavelets on the $m$-sphere for scattered data, Appl. Comput. Harmon. Anal. 3 (1996), no. 4, 324–336. MR 1420501, DOI 10.1006/acha.1996.0025
- Manfred Reimer, Constructive theory of multivariate functions, Bibliographisches Institut, Mannheim, 1990. With an application to tomography. MR 1115901
- Kurt Jetter and Florencio I. Utreras (eds.), Multivariate approximation: from CAGD to wavelets, Series in Approximations and Decompositions, vol. 3, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. MR 1359541, DOI 10.1142/2066
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- Larry L. Schumaker and Cornelis Traas, Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines, Numer. Math. 60 (1991), no. 1, 133–144. MR 1131503, DOI 10.1007/BF01385718
- Rudolph E. Langer, The boundary problem of an ordinary linear differential system in the complex domain, Trans. Amer. Math. Soc. 46 (1939), 151–190 and Correction, 467 (1939). MR 84, DOI 10.1090/S0002-9947-1939-0000084-7
- Grace Wahba, Surface fitting with scattered noisy data on Euclidean $D$-space and on the sphere, Rocky Mountain J. Math. 14 (1984), no. 1, 281–299. Surfaces (Stanford, Calif., 1982). MR 736179, DOI 10.1216/RMJ-1984-14-1-281
Additional Information
- Kurt Jetter
- Affiliation: Institut für Angewandte Mathematik und Statistik, Universität Hohenheim, D-70593 Stuttgart
- Email: kjetter@uni-hohenheim.de
- Joachim Stöckler
- Affiliation: Institut für Angewandte Mathematik und Statistik, Universität Hohenheim, D-70593 Stuttgart
- Email: stockler@uni-hohenheim.de
- Joseph D. Ward
- Affiliation: Department of Mathematics, Texas A&M University, College Station, TX 77843
- MR Author ID: 180590
- Email: jward@math.tamu.edu
- Received by editor(s): August 25, 1997
- Additional Notes: Research supported by NSF Grant DMS-9303705 and Air Force AFOSR Grant F49620-95-1-0194.
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp. 68 (1999), 733-747
- MSC (1991): Primary 41A05, 41A25; Secondary 41A30, 41A63
- DOI: https://doi.org/10.1090/S0025-5718-99-01080-7
- MathSciNet review: 1642746