Explicit error bounds in a conforming finite element method
HTML articles powered by AMS MathViewer
- by Philippe Destuynder and Brigitte Métivet PDF
- Math. Comp. 68 (1999), 1379-1396 Request permission
Abstract:
The goal of this paper is to define a procedure for bounding the error in a conforming finite element method. The new point is that this upper bound is fully explicit and can be computed locally. Numerical tests prove the efficiency of the method. It is presented here for the case of the Poisson equation and a first order finite element approximation.References
- Mark Ainsworth and J. Tinsley Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math. 65 (1993), no. 1, 23–50. MR 1217437, DOI 10.1007/BF01385738
- R. Arcangéli and J. L. Gout, Sur l’évaluation de l’erreur d’interpolation de Lagrange dans un ouvert de $\textbf {R}^{n}$, Publications mathématiques de l’Université de Pau et des Pays de l’Adour (dédiées à Pierre Abile), Exp. No. 5, Univ. de Pau et des Pays de l’Adour, Pau, 1974, pp. 22 (French). MR 0613507
- Douglas N. Arnold, Jim Douglas Jr., and Chaitan P. Gupta, A family of higher order mixed finite element methods for plane elasticity, Numer. Math. 45 (1984), no. 1, 1–22. MR 761879, DOI 10.1007/BF01379659
- I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736–754. MR 483395, DOI 10.1137/0715049
- Ivo M. Babuška and Rodolfo Rodríguez, The problem of the selection of an a posteriori error indicator based on smoothening techniques, Internat. J. Numer. Methods Engrg. 36 (1993), no. 4, 539–567. MR 1201743, DOI 10.1002/nme.1620360402
- R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), no. 170, 283–301. MR 777265, DOI 10.1090/S0025-5718-1985-0777265-X
- C. Bernardi, B Métivet and R. Verfürth [1993], Analyse numérique d’indicateurs d’erreur, note EDF-M172/93062.
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- M. Collot [1998], Analysis and implementation of explicit error bounds for finite element methods; Static and dynamic aspects, CNAM, Paris.
- Ph. Destuynder and B. Métivet [1998], Explicit error bounds for a non-conforming finite element method, Finite Element Methods (Jyväskylä, 1997), Lecture Notes Pure Appl. Math., vol. 196, Marcel Dekker, New York, 1998, pp. 95–111.
- Philippe Destuynder and Brigitte Métivet, Estimation explicite de l’erreur pour une méthode d’éléments finis non conformes, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 11, 1081–1086 (French, with English and French summaries). MR 1396645
- Philippe Destuynder and Brigitte Métivet, Estimation d’erreur explicite dans une méthode d’éléments finis conforme, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 6, 679–684 (French, with English and French summaries). MR 1411065
- Ph. Destuynder, M. Collot, and M. Salaün [1997], A mathematical framework for the P. Ladevèze a posteriori error bounds in finite element methods, New Advances in Adaptive Computational Methods in Mechanics (T. Oden and P. Ladevèze, eds.), Elsevier, Amsterdam. (to appear)
- Kenneth Eriksson and Claes Johnson, An adaptive finite element method for linear elliptic problems, Math. Comp. 50 (1988), no. 182, 361–383. MR 929542, DOI 10.1090/S0025-5718-1988-0929542-X
- L. Gallimard, P. Ladeveze, and J. P. Pelle [1995], La méthode des erreurs en relation de comportement appliquée au contrôle des calculs non linéaires. École CEA EDF-INRIA. Cours du 18–21 septembre 1995 sur le calcul d’erreur a posteriori et adaptation de maillage.
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- P. Ladevèze [1975], Comparaison de modèles de mécanique des milieux continus. Thèse d’état, Université Paris VI, Paris.
- P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983), no. 3, 485–509. MR 701093, DOI 10.1137/0720033
- L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy, Toward a universal $h$-$p$ adaptive finite element strategy. I. Constrained approximation and data structure, Comput. Methods Appl. Mech. Engrg. 77 (1989), no. 1-2, 79–112. MR 1030146, DOI 10.1016/0045-7825(89)90129-1
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 292–315. MR 0483555
- P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). MR 773854
- J. E. Roberts and J. M. Thomas [1987], Mixed and hybrid finite element methods, Rapport INRIA n$^\circ$737.
- A. H. Schatz, I. H. Sloan, and L. B. Wahlbin, Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal. 33 (1996), no. 2, 505–521. MR 1388486, DOI 10.1137/0733027
- R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), 1994, pp. 67–83. MR 1284252, DOI 10.1016/0377-0427(94)90290-9
- O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg. 24 (1987), no. 2, 337–357. MR 875306, DOI 10.1002/nme.1620240206
- O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique, Internat. J. Numer. Methods Engrg. 33 (1992), no. 7, 1331–1364. MR 1161557, DOI 10.1002/nme.1620330702
Additional Information
- Philippe Destuynder
- Affiliation: CNAM/IAT, 15 rue Marat, 78210 Saint-Cyr-L’École, France
- Email: destuynd@cnam.fr
- Brigitte Métivet
- Affiliation: 1 avenue du Général de Gaulle, 92141 Clamart, France
- Email: brigitte.metivet@der.edfgdf.fr
- Received by editor(s): June 5, 1996
- Received by editor(s) in revised form: February 19, 1998
- Published electronically: February 24, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp. 68 (1999), 1379-1396
- MSC (1991): Primary 65N30, 65R20, 73C50
- DOI: https://doi.org/10.1090/S0025-5718-99-01093-5
- MathSciNet review: 1648383