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EXPLICIT ERROR BOUNDS
IN A CONFORMING FINITE ELEMENT METHOD

PHILIPPE DESTUYNDER AND BRIGITTE MÉTIVET

Abstract. The goal of this paper is to define a procedure for bounding the
error in a conforming finite element method. The new point is that this upper
bound is fully explicit and can be computed locally. Numerical tests prove
the efficiency of the method. It is presented here for the case of the Poisson
equation and a first order finite element approximation.

1. Introduction

Let us consider the following problem:{
find u ∈ H1

0 (Ω) such that, for all v ∈ H1
0 (Ω),∫

Ω ∇u • ∇v =
∫
Ω fv,

(1)

where f is a function in the space L2(Ω) and ∇ denotes the gradient of a func-
tion. It is well known that (1) has a unique solution. Furthermore, under classical
assumptions, one can prove that u is an element of the space H2(Ω) ∩H1

0 (Ω) (no
re-entrant angle∗ on the boundary, which should be piecewise smooth enough).

Let us now consider a family of triangulations of Ω, assumed to be uniformly
regular (see Girault and Raviart [16]). One triangulation is denoted by T h, where
h denotes the size of the mesh. The approximation space of H1

0 (Ω), based on the
triangulation T h, is denoted by V h and is, for instance, defined by

V h = {v ∈ H1
0 (Ω), ∀K ∈ T h, v|K ∈ P1(K)},(2)

where P1(K) is the first degree polynomial space. Then the approximation of u,
denoted by uh, is defined by{

find uh ∈ V h such that for all v ∈ V h∫
Ω
∇uh • ∇v =

∫
Ω
fv.

(3)

The classical error estimate between u and uh is derived from the a priori in-
equality

|u− uh|1,Ω ≤ inf
v∈V h

|v − u|1,Ω,(4)

where | |1,Ω is the classicalH1 seminorm. From the interpolation results (see Ciarlet
[8] or Raviart and Thomas [22]), one can deduce that there exists a constant c which
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1380 PHILIPPE DESTUYNDER AND BRIGITTE MÉTIVET

is independent of both h and u, and such that

|u− uh|1,Ω ≤ ch|u|2,Ω.(5)

But, unfortunately, this estimate is not explicit because |u|2,Ω is not.
Let us explain another way to derive an error bound, which was introduced by

P. Ladevèze in his thesis [17] and which is a particular implication of Prager and
Synge’s identity. Let us first introduce the following set of vector fields in Ω:

Hf (div,Ω) = {p ∈ (L2(Ω))2, div p+ f = 0 in Ω}.(6)

Then one has the inequality, used first by Ladevèze [17],

|u− uh|1,Ω ≤ inf
p∈Hf (div,Ω)

‖p−∇uh‖0,Ω,(7)

the proof of which is a straightforward consequence of the following identity (Prager
and Synge [20]). Let p and v be arbitrary elements in the sets Hf (div,Ω) and V h,
respectively. Then, if u is a solution of the Poisson model, one has

|u− v|21,Ω + ‖p−∇u‖2
0,Ω = ‖p−∇v‖2

0,Ω.

Because of its simplicity the proof is left to the reader. The inequality (7) is
obtained with v = uh.

The goal of the method that we develop is then to define an element p in the
set Hf (div,Ω) such that p−∇uh is as small as possible. In this paper we suggest
a choice for p, and we prove that the term ‖p−∇uh‖0,Ω is O(h), provided that
u is in the space H2(Ω) and that the mesh family satisfies a uniform regularity
assumption.

Let us point out the differences between (4) and (7). The first is a so-called
a priori estimate, and the second is a posteriori. In the first case the exact solution
u is involved, but in the second case only uh is necessary. The error bound deduced
from (4) requires us to define an element v in the case V h such that |∇v −∇u|1,Ω

will be as small as possible. The space V h is a conforming approximation of H1
0 (Ω).

When (7) is used, the infimum is taken over vector fields chosen in the admissible
set Hf (div,Ω) for the problem dual to (1). Let us recall that this dual problem
consists in minimizing in Hf (div,Ω) the function

p→ 1
2

∫
Ω

|p|2.(8)

The numerical approximation of this problem is very difficult, and one prefers
to use a mixed formulation. It enables one to avoid requiring exact satisfaction of
the condition

div p+ f = 0 in Ω.(9)

As a matter of fact it is, for instance, replaced by

div ph +
1
|K|

∫
K

f = 0, ∀K ∈ T h

(ph being the solution of a first order mixed finite element).
Such an element ph cannot be used in (7) because ph /∈ Hf (div,Ω). Further

details concerning mixed finite elements can be found in Roberts and Thomas [23].
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EXPLICIT ERROR BOUND 1381

Hence we add a complementary element, call it δpK , defined by



δpK = ∇δuK , in K,

−∆δuK = f − 1
|K|

∫
K

f, in K,

∂δuK

∂ν
= 0 on ∂K and

∫
K

δuK = 0.

(10)

The term p = ph + δpK is then in Hf (div,Ω). It can be proved that, with this
choice, p−∇uh is O(h) in the L2(Ω) norm. But unfortunately the computation of
ph is not local and requires the solution of a global linear system (over the whole
triangulation T h). Hence our goal is to construct a local approximation of ph

that does not require many computations. One application of the method is the
adaptive mesh refinement, but let us point out that the true new point is that the
error bound is explicit. Then we also discuss the asymptotic exactness of our error
estimator.

There is a well-developed literature on a posteriori error estimates and adaptive
mesh refinement for the elliptic equations. It seems quite impossible to list each
contribution in a single paper. But let us try to mention some of the papers that
are closest to our formulation.

The closest idea is due to Ladevèze [17]. But it appears that this author did not
use an exact construction of the dual variable, which we need in our formulation.
From a mathematical point of view, Ainsworth and Oden [1] have underlined the
interest in a coupling between a conformal finite element approximation and a
hybrid one. They suggest using the Lagrange multiplier, which is defined in order
to prescribe the inter-element continuity, in order to construct an error estimator
by solving a local (i.e., element by element) problem. The way they do it is close
to but different from the one we suggest in this paper. The idea of comparing
the finite element solution with the dual problem is also the origin of the method
developed by Zienkiewicz and Zhu in [26] and [27], but they did not require the dual
variable (the stress field in their mechanical applications) to satisfy the equilibrium
equation. Moreover, they used a whole continuity of this dual variable at the inter-
element, instead of only the one of the normal component. Therefore, the strategy
seems to be hazardous in case of singularities like a discontinuity of coefficients in
the operator (bimaterial).

From the mathematical point of view, let us mention three other strategies which
are well founded and seem to be very promising. To our best knowledge the first is
due to Babuška and Rheinboldt [4]. The basic trick consists in bounding the error
between the exact and approximate solution by a constant times the so-called resid-
ual terms. There are two. One of them is the jump between the normal derivatives
of the finite element solution across the inter-elements, and the other one is the lack
of equilibrium inside the elements. Then Verfürth [25] and Bernardi, Métivet and
Verfürth [7] proved that this error bound is also—up to a multiplicative constant—a
lower bound on the error. The method, which can be extended to elasticity and the
Stokes model [25], [7], seems to be very efficient in numerical applications. This is
why we used it to compare with our formulation in the numerical tests in the last
section of this paper.
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1382 PHILIPPE DESTUYNDER AND BRIGITTE MÉTIVET

The second strategy is certainly the most promising for the near future. It is
based on superconvergence results. For particular meshes this strategy was de-
veloped by Babuška and Rodriguez [5], but the most important step for defining
superconvergence points was achieved by Schatz, Sloan and Walhbin [24]. The
mesh refinement should be defined using these points. The advantage is that the
method would lead to a local contribution to the error.

The third method is quite close to ours from a theoretical point of view. It was
developed by Bank and Weiser [6]. The basic point seems to be to solve a local
Neumann problem in order to construct an a posteriori error estimator. The main
advantage of the method, compared to others, is that it gives (in an appropriate
norm) an asymptotically exact estimate of the error as the mesh size tends to zero.

2. Organisation of the paper

First we will recall a few properties of the approximation model. Then we find
an element, call it ph, whose construction can be performed locally (i.e., in the
vicinity of one vertex of the mesh). This element satisfies

div ph +
1
|K|

∫
K

f = 0 ∀K ∈ T h,

and ph ∈ H(div,Ω). The next step consists in finding a solution δuK of (10) and
in proving that δuK can be small if f is smooth enough. Using the Green kernel,
this term is explicit as the solution of a local boundary integral equation. The
numerical solution can then be found with a predefined accuracy.

The last step, but not the least, is to prove that the error bound p−∇uh, where
p = ph +∇δuK in each element K of T h, is itself bounded by O(h).

3. Properties of the conforming finite element solution

Let us denote by Sh the set of all the internal vertices of T h. For each vertex Si

we introduce the basis function λi of V h, which is equal to 1 at Si and 0 at all the
other vertices. From the definition of uh we have∫

Ch
i

∇uh • ∇λi −
∫
Ch

i

fλi = 0,(11)

where Ch
i is the so-called “cluster” around Si—the collection of elements K of T h

which have Si as a vertex (see Figure 1). We denote by γk
i the sides of Ch

i that have
Si as one of their two extremities. The number of elements K in Ch

i is κ.
Using the Stokes formula, one can transform (11) into the following relationship:

κ∑
k=1

{
meas(γk

i )
2

[
∂uh

∂ν

]k

i

−
∫

Kk

fλi

}
= 0,(12)

where [·]ki is the jump of a quantity across the side γk
i . This relation can be inter-

preted from a mechanical (for instance) point of view. The first terms represent
the moment of ∇uh at the vertex Si and along the side γk

i . The second term is the
moment of the external forces acting in K and expressed at the vertex Si. Then
(12) gives a global equilibrium of these moments at Si.

The basic idea in the construction of ph mentioned in the introduction is to
equilibrate separately on each element K of Ch

i the moments at the vertex Si and
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Si

Kk

γi
k+1

γi
k

ν

Figure 1. Cluster Ch
i , Si ∈ Sh

to ensure the equilibrium between two neighbour elements. Hence we look for ph

such that p
h
i ∈ H(div, Ch

i ), ph
i • ν = 0 on ∂K ∩ ∂Ch

i ,

div ph
i =

1
|K|

{∫
K

∇uh • ∇λi −
∫

K

fλi

}
,

(13)

which implies that an assumed solution satisfies, for all K ∈ Ch
i ,∫

∂K

ph
i • ν =

∫
K

∇uh • ∇λi −
∫

K

fλi

=
∫

γ1
i

∂uh

∂ν
λi +

∫
γ2

i

∂uh

∂ν
λi −

∫
K

fλi

=
meas(γ1

i )
2

(
∂uh

∂ν

)
+

meas(γ2
i )

2

(
∂uh

∂ν

)
−

∫
K

fλi

(γ1
i and γ2

i are the two sides of K which have Si as an extremity). Hence the term
ph

i appears as the complementary system of forces which could be applied in order
to equilibrate separately each triangle of the cluster Ch

i for the test variable λi. The
existence of ph

i is proved in the next section.

4. Definition of an equilibrium vector field on Ω

Let us consider an arbitrary vertex Si of the triangulation T h. We associate to
Si the cluster Ch

i , which is the set of elements K of T h such that Si is a vertex of
K. But Si can be a point on the boundary of Ω. In both cases the cluster Ch

i can
be defined as shown in Figure 2.

It is worth noting that the definition of the boundary ∂Ch
i in this second situation

does not include the vertices which belong to the boundary ∂Ω of Ω.
In order to approach the vector fields of the space H(div,Ω), we make use of the

finite elements introduced by Raviart and Thomas in [21]. Their restriction to the
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K

K

Si

Si∂Ci

Ci for internal point

h

∂Ci
h

h

Ci for a boundary pointh 

∂Ω

Figure 2. The two types of clusters

cluster Ch
i is denoted by HRT1(div, Ch

i ), and we use the definition

HRT1(div, Ch
i ) =

{
p ∈ (L2(Ch

i ))2, p • ν = 0 on ∂Ch
i ,

∀K ∈ Ch
i , p|K =

∣∣∣∣aK + bKx
cK + bKy

}
.

The index RT1 means Raviart-Thomas, degree 1. One remarkable property of the
vectors in the space HRT1(div, Ch

i ) is that p • ν is constant and continuous across
the sides of the elements, because p is in the space H(div, Ch

i ). Then we introduce
the following problem:Find ph

i ∈ HRT1(div, Ch
i ) such that for all K ∈ Ch

i ,

div ph
i =

1
|K|

{∫
K

∇uh • ∇λi −
∫

K

fλi

}
, in K,

(14)

and we prove the next result.

Theorem 1. There exists a solution to (14) that is defined up to an element of the
kernel of the linear system. More precisely,

ph
i = ph

i + αi rotλi, αi ∈ R,

where ph
i is a particular solution of (14)

Proof. a) Let us begin with the case where Si is an internal vertex of the triangu-
lation T h. Then the linear system (14) has the same number of unknowns and of
equations (there are as many sides from Si as elements in Ch

i ). Let us therefore an-
alyze the homogeneous system associated to (14). This problem consists in finding
an element δh

i in HRT1(div, Ch
i ) such that for all K ∈ Ch

i ,

div δh
i = 0 in K.(15)
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Because the cluster Ch
i is a simply connected open set, there exists a function ψi

such that

δh
i = rotψi, ψi ∈ H1(Ch

i ).

Furthermore, the condition δh
i •ν = 0 on ∂Ch

i implies that ψi is constant along ∂Ch
i .

As ψi is defined up to a constant, without any loss of generality we can choose
ψi = 0 on ∂Ch

i . But δh
i is in the space HRT1(div, ∂Ch

i ). Hence on each element K
of Ch

i one has

rotψi =
∣∣∣∣aK + bKx
cK + bKy

=
∣∣∣∣aK

cK

(bK is zero because div δh
i = 0). Finally, ψi is piecewise linear and therefore is

proportional to the basis function λi. In this situation (internal vertex), the kernel
of (14), which is one dimensional, is generated by the vector rotλi.

b) If now we consider Si on the boundary of Ω, everything we did in the previous
situation is still valid concerning the kernel.

It has been proved that the linear system (14) is singular and that the kernel is
one dimensional. When the vertex Si is internal to the triangulation T h, the matrix
of the linear system (14) is a square matrix and therefore the right-hand side must
be orthogonal to the cokernel (i.e., the kernel of the transposed matrix). When Si

is on the boundary ∂Ω, there is no compatibility requirement because the matrix
associated to (14) is rectangular and we have one more unknown than equations.

Let us characterize the cokernel of the matrix associated to the linear system
(14). We already know that it is one dimensional.

An element X = (Xi), i = 1, . . . , κ, of the cokernel satisfies

∀q ∈ HRT1(div, Ch
i ),

κ∑
j=1

Xj(div q)|Kj
= 0 (Kj ∈ Ch

i ),

but as Xj(div q)|Kj
is constant on each triangle Kj of Ch

i , one has

κ∑
j=1

1
|Kj|

∫
Kj

Xj(div q)|Kj
= 0,

or else

κ∑
j=1

∫
γj

i

(
Xj

|Kj |
− Xj−1

|Kj−1|

)
q • ν|γj

i
= 0,

where γj
i denotes the sides of Ch

i that have Si as an extremity, as shown in Figure
2. Thus the quantity

ξ = Xj/|Kj|, j = 1, . . . , κ,

is constant for any j. The cokernel is finally spanned by the vector X = (Xj) =
(|Kj|) (measure of Kj).
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The compatibility condition for the system (14) can then be formulated as
κ∑

j=1

[∫
Kj

∇uh • ∇λi −
∫

Kj

fλi

]
= 0,

or else ∫
Ch

i

∇uh • ∇λi =
∫
Ch

i

fλi,(16)

which is precisely (for internal vertices) one of the equations characterizing uh.
Therefore the right-hand side of (14) is orthogonal to the cokernel, and Theorem 1
is proved.

From the elements ph
i defined in Theorem 1 we introduce the term

ph =
∑
i∈Sh

ph
i ,(17)

where Sh is the set of all vertices of triangulation T h, including those on the
boundary of Ω (Sh is restricted to the internal points). From the definition of ph

i ,
and because ph

i = 0 on Ω− Ch
i , one has

div ph =
∑
i∈Sh

div ph
i =

∑
i∈Sh

∑
K∈Ch

i

1
|K|

{∫
K

∇uh • ∇λi −
∫

K

fλi

}
,

and because on each triangle K we have
∑

i∈Sh λi = 1, we conclude that, for all
K ∈ T h,

div ph +
1
|K|

∫
K

f = 0.(18)

As the element ph defined in (18) is not in the set Hf (div,Ω), we add a local
term δuK (defined on each triangle of T h) such that

δpK = ∇δuK on K, with δuK ∈ H1(K),

−∆δuK = f − 1
|K|

∫
K

f on K,

∂δuK

∂ν
= 0 on ∂K and

∫
K

δuK = 0.

(19)

The existence and uniqueness of a solution to (19) is very classical, and finally
we set, on each K of T h,

p = ph + δpK .(20)

It is worth noting that δpK ∈ H(div,Ω), because of the homogeneous Neumann
boundary condition that we chose on ∂K. Then a simple compilation of the previous
results shows that

div p+ f = 0 on Ω.(21)

As a matter of fact, the term δuK is only dependent of the right-hand side f of
the problem (1). It is obvious that δuK = 0 if f = 0 on K. More precisely, we can
upper bound δuK depending on the regularity (local) of f .

The result is made explicit in the following theorem.
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Theorem 2. Assume that f is in L2(Ω) and that the triangulation family is regu-
lar. Then there exists a constant c, independent of both f and h, such that

|δuK |1,K ≤ ch‖f‖0,K .

Furthermore, if f is in H1(K), then, under the same assumptions,

|δuK |1,K ≤ ch2‖f‖1,K.

Proof. From the definition of δuK , and letting Π0 denote the L2(K) projection onto
the constants, one obtains

|δuK |21,K = −
∫

K

∆(δuK)δuK =
∫

K

(
f − 1

|K|

∫
K

f

)
δuK

≤ ‖f −Π0f‖0,K‖δuK‖0,K

and, by Lemmas 1 and 2 (see the Appendix),

|δuK |21,K ≤ ch‖f −Π0f‖0,K |δuK |1,K

≤
{
ch‖f‖0,K|δuK |1,K if f ∈ L2(K),
ch2‖f‖1,K|δuK |1,K if f ∈ H1(K).

This completes the proof of Theorem 2.

Remark. In the definition of ph
i the coefficient αi (see Theorem 1) is not yet defined.

Let us mention one possibility. Consider one side of a cluster with the center Si as
an extremity. Then on this side, call it γ1

i , one has

αi

∫
γ1

i

rotλi • ν +
∫

γ1
i

ph
i • ν −

∫
γ1

i

1
2
∂uh

∂ν

= αi +
∫

γ1
i

(
ph

i • ν −
1
2
∂uh

∂ν

)
,

and we can choose αi such that this quantity is zero. Hence

αi = −
∫

γ1
i

(
ph

i • ν −
1
2
∂uh

∂ν

)
= −

∫
γ1

i

(
ph

i ν −
∂uh

∂ν
λi

)
= −meas(γ1

i )
[
ph

i • ν −
1
2
∂uh

∂ν

]
|γ1

i

(22)

We shall prove below that such a choice leads to a consistent error bound.

5. Asymptotic behaviour of the explicit error bound

between u and uh
when h tends to zero

Let us consider the element p defined in (20). From the a posteriori inequality,
we have

|u− uh|1,Ω ≤ ‖p−∇uh‖0,Ω = ε.

The main result of this section is to prove that ε is bounded by O(h). This
will justify that this explicit error bound is consistent with respect to the classical
results known in finite element methods.
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Theorem 3. Assume that f is in L2(Ω) and that the triangulation family is uni-
formly regular. Then there exists a constant c, independent of both h (the mesh
size) and f , such that

‖p−∇uh‖O,Ω ≤ ch[‖f‖0,Ω + |u|2,Ω].

Proof. First of all, on each element K of the triangulation T h we set

k = ph +∇δuK −∇uh.

Note that onK we have curl k = 0 and div k+f = 0. Furthermore, on the boundary
∂K of K, k satisfies

k • ν = phν • −∂u
h

∂ν

(
because

∂δuK

∂ν
= 0 on ∂K

)
.

Therefore, we can deduce that there exists a function ϕK such thatk = ∇ϕK and
∫

K

ϕK = 0,

ϕK =∈ H1(K);

in addition ϕK is a solution of
−∆ϕK = f in K,

∫
K

ϕK = 0,

∂ϕK

∂ν
= ph • ν − ∂uh

∂ν
on ∂K, ϕK ∈ H1(K).

(23)

The previous model defines ϕK uniquely. But one also has

ε2K
def≡

∫
K

|ph +∇δuK −∇uh|2 = |ϕK |21,K(24)

and, from (23),

ε2K =
∫

K

fϕK +
∫

∂K

(
ph • ν − ∂uh

∂ν

)
ϕK .

Our goal is now to prove that εK is O(h). First of all,

ε2K =
∫

K

fϕK +
∑
i∈Sh

∫
∂K

ph
i • νϕK −

∫
∂K

∂uh

∂ν
ϕK .

But the summation over the index i here is restricted to the three vertices of K.
Let us introduce the element q̂ in the space HRT1(div, K) defined (see Raviart and
Thomas in [21]) by

∀γ ∈ ∂K, q̂ • ν|γ =
1

meas(γ)

∫
γ

∂u

∂ν
,

where γ is a side of K and u is the solution of the initial problem, and we assume
that u is in H2(Ω). The error estimates proved by Raviart and Thomas [21] lead
to (the triangulation family is assumed to be regular)

‖q̂ −∇u‖0,K ≤ ch|u|2,K ,

and
‖div q̂ − div(∇u)‖0,K = ‖div q̂ + f‖0,K ≤ ch[‖f‖0,K + |u|2,K ].

(25)
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Then one obtains the following equality:

ε2K =
∫

K

fϕK +
∑

i∈{i1,i2,i3}

∫
∂K

(ph
i • ν − λi q̂ • ν)ϕK

+
∫

∂K

(
q̂ • ν − ∂uh

∂ν

)
ϕK ,

or else, using the Stokes formula (i1, i2 and i3 are the three vertices of K),

ε2K =
∫

K

fϕK +
∫

K

(q̂ −∇uh)∇ϕK +
∫

K

div q̂ϕK

+
∑

i∈{i1,i2,i3}

∫
∂K

(ph
i • ν − λi q̂ • ν)ϕK .

Hence

ε2K ≤ ‖f + div q̂‖0,K‖ϕK‖0,K + ‖q̂ −∇uh‖0,K |ϕK |1,K

+

∣∣∣∣∣∣
∑

i∈{i1,i2,i3}

∫
∂K

(ph
i • ν − λi q̂ • ν)ϕK

∣∣∣∣∣∣ .(26)

From the triangular inequality and Lemma 1 in the Appendix, we deduce that

ε2K ≤ ch[‖f‖0,K + |u|2,K + |u− uh|1,K ]|ϕK |1,K

+

∣∣∣∣∣∣
∑

i∈{i1,i2,i3}

∫
∂K

(ph
i • ν − λi q̂ • ν)ϕK

∣∣∣∣∣∣ .(27)

But on each side γ of ∂K only two terms ph
i (for i = i1 and i2, for instance) are

different from zero. Therefore∣∣∣∣∣∣
∑

i∈{i1,i2,i3}

∫
∂K

(ph
i • ν − λi q̂ • ν)ϕK

∣∣∣∣∣∣
=

∑
γ⊂∂K

 ∑
i∈{i1,i2}

∫
γ

(ph
i • ν − 1

2 q̂ • ν)ϕK


≤ 2

∑
γ⊂∂K

{∣∣ph
i ν − 1

2 q̂ • ν
∣∣
|γ

√
meas(γ)‖ϕK‖0,γ

}
,

where γk
i is one side of the cluster Ch

i with the center Si as an extremity. First of
all, if we define

Xk
i

def=
∫

γk
i

(ph
i • ν − λi q̂ • ν) = meas(γk

i )[rh
i · ν − 1

2 q̂ · ν]|γk
i
,

then

Xk+1
i −Xk

i =
∫

γk+1
i

(ph
i • ν − λi q̂ • ν)−

∫
γk

i

(ph
i • ν − λi q̂ • ν)

=
∫

Kk

div ph
i −

∫
Kk

div q̂ λi −
∫

Kk

q̂ • ∇λi

(28)

and, because of the definition ph
i (see Figure 3),
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Kk

° i
k+1

° i
k

Figure 3. A triangle Kk of Ch
i

Xk+1
i −Xk

i =
∫

Kk

(∇uh − q̂) • ∇λi −
∫

Kk

(f + div q̂)λi,

which is bounded by

c[h|u|2,Kk + |u− uh|1,Kk + [‖f‖0,Kk + |u|2Kk ]‖λi‖0,Kk ]

or else

Xk+1
i −Xk

i ≤ ch(‖f‖0,Kk + |u|2,Kk) + |u− uh|1,Kk .(29)

But from the definition of the coefficient αi in the expression of ph
i one has (see

(22)):

X1
i =

∫
γ1

i

(ph
i • ν − λi q̂ • ν)

= αi +
∫

γ1
i

ph
i • ν −

1
2

∫
γ1

i

∂uh

∂ν
+

1
2

∫
γ1

i

(
∂uh

∂ν
− q̂ • ν

)
=

1
2

∫
γ1

i

(
∂uh

∂ν
− q̂ • ν

)
.

Let us denote by ξ the second degree polynomial function on the triangle K1
i

equal to 1 on the middle of γ1
i and zero on the two other sides. Then, setting

(
∫

γ1
i
ξ = meas(γ1

i )2
3 ), we have

X1
i =

3
4

∫
γ1

i

(
∂uh

∂ν
− q̂ • ν

)
ξ,

and, from the Stokes formula,

X1
i =

∫
K1

(∇uh − q̂) • ∇ξ −
∫

K1
div q̂ξ

≤ c(|uh − u|1,K1 + ‖∇u− q̂‖0,K1 + h‖div q̂‖0,K1).

Finally, the inequalities

‖∇u− q̂‖0,K1 ≤ ch|u|2,K1 , ‖div q̂‖0,K1 ≤ c|u|2,K1

enable one to obtain the estimate

|X1
i | ≤ ch[‖f‖0,K1 + |u|2,K1 ] + |u− uh|1,K1 ,(30)
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and from (29) we obtain

|Xk
i | ≤ ch[‖f‖0,Ch

i
+ |u|2,Ch

i
] + c|u− uh|1,Ch

i
(31)

for all k = 1, . . . , κ (all the sides γk
i of the cluster Ch

i with Si as an extremity).
The proof of Theorem 3 is then a consequence of (5), (27), (31), and Lemmas

1 and 3 in the Appendix. Obviously it requires that the number of triangles in a
cluster must be bounded above.

Remark. As we proved in Theorem 2 that

|δuK |1,K ≤ ch2‖f‖1,K,

it can be suggested that if f is smooth enough, this term can be omitted.

Remark. When δuK must be computed, it is interesting to use a subgrid on K.
We point out that this computation is highly parallel, or can even be vectorized.
Therefore, the computational time is very much reduced.

6. Numerical tests

Let us now suppose that uh is a solution of the classical conforming finite ele-
ment method defined by (3). Let us recall that in order to apply the Prager-Synge
relation, one has to construct a vector field p lying in the set Hf (div,Ω). The
Raviart-Thomas finite element is used. For clarity, we recall briefly the basic prin-
ciples of our strategy.

At each node Si of a mesh T h, we define the cluster of elements Ch
i , which is the

union of elements having Si as a vertex.
Then for each Si (even on the boundary of Ω), we set

ph
i ∈ HRT1(div, Ch

i ),

div ph
i =

1
|K|

{∫
K

∇uh • ∇λi −
∫

K

fλi

}
,

∀K ∈ Ch
i

(32)

(λi is the continuous piecewise linear function equal to one at Si and 0 at all the
other nodes). Here we have put

HRT1(div, Ch
i ) =

{
p ∈ H(div, Ch

i ), p • ν = 0 on ∂Ch
i

and ∀K ∈ Ch
i p|K =

∣∣∣∣aK + bKx

cK + bKy

}
.

The existence of a solution to (32) has been proved in §4. But the solution is
not unique. More precisely, we proved that the general solution is

ph
i = ph

i + αi rotλi,

where ph
i is a particular solution of (32) and αi is an arbitrary constant. We set

ph =
∑
i∈Sh

ph
i =

∑
i∈Sh

ph
i +

∑
i∈Sh

αi rotλi,(33)

where Sh denotes the set of all the nodes of T h (including those on the boundary).
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Figure 4.1. Examples
of a regular mesh

Figure 4.2. Examples
of a mesh obtained by a
mesh-generator

A nice choice for the coefficients αi is obtained by minimizing the error bound
(assuming that div ph + f = 0, or else that f is piecewise constant, for simplicity):

α ∈ RL →

∥∥∥∥∥∥ph +
∑
i∈Sh

αi rotλi −∇uh

∥∥∥∥∥∥
0,Ω

,(34)

where L = card(Sh).
Two strategies can be then discussed. One consists in replacing (34) by a local

minimization (one iteration of the Jacobi algorithm, for instance, even if the matrix
is not diagonal dominant). The second one is more well founded, and it consists
in adding to the former one iteration of the SSOR algorithm. These two strategies
have been checked on the test model presented in this paper. One can see that
the second one is more reliable for irregular meshes (see Figures 5 and 6). As the
additional cost is negligible, it has to be recommended for general applications.

The open set used is a square and two different kinds of meshes are used. They
are represented in Figures 4.1 and 4.2.

In order to compare the method described here and the error indicator strategy
of Bernardi, Métivet and Verfürth [7], we have plotted this quantity (denoted by
Bh) in Figures 5 and 6. Let us recall that it is defined by

Bh =

 ∑
K∈T h

hK‖f + ∆uh‖0,K +
1
2

∑
γ⊂∂K

|γ|1/2

∥∥∥∥[
∂uh

∂ν

]∥∥∥∥
0,γ


2


1/2

.(35)

The indicator Bh is larger (a ratio of 6 with the exact error instead of 1.3 for
the method developed here). Another advantage of our error bound is that one can
improve the approximation of u by a local minimization problem, for instance, by
adding degrees of freedom on the sides between elements. For example, we have
added degrees of freedom at the midpoint of the inner edges of the meshes. The
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0.010

0.001

0.100

Present estimate, local minimization
Present estimate, one iteration of Gauss-Seidel
Bernardi-Metivet-Verfürth estimate
Exact error

0.010
Mesh size

´

Figure 5. The error bounds, the exact errors, and the error indi-
cators for regular meshes

0.010

0.001

0.100 0.010

Nonregular mesh

Present estimate, local minimization
Present estimate, one iteration of Gauss-Seidel
Bernardi-Metivet-Verfürth estimate
Exact error

´

Figure 6. The error bounds, the exact errors, and the error indi-
cators for irregular meshes
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0.010

0.001

0.100

Exact error for the f.e.m. solution
Error estimator for the f.e.m. solution
Exact error for the upgraded f.e.m. solution
Error estimator for the upgraded f.e.m. solution

0.010
Mesh size

Nonregular mesh

Figure 7. Local upgrade of the finite element solution using mid-
point degrees of freedom

error estimator obtained with this upgraded solution has been plotted in Figure 7.
We have also represented the exact error between the solution u and this new term.
The former results have been recalled in order to evaluate the improvement due to
this trick.

7. Conclusion

The method that we have developed in this paper is a new strategy for explicitly
bounding the error in a finite element method using conforming approximation.
The extension to elliptical problems does not require any new tricks. For instance,
the case of 2D-elasticity can be handled. The difficulty is then to construct a
symmetrical equilibrium finite element. The way we know consists in replacing a
Raviart-Thomas element by one of the family suggested by Arnold, Douglas and
Gupta in [3]. In another respect the contribution to the error εK defined at (24)
can be used as an error indicator in an automatic mesh refinement algorithm.
The restricted numerical discussion given in §6 enables one to observe a few of the
advantages of the method developed in this paper. A more extensive presentation of
the numerical tests is given by Destuynder, Collot and Salaün in [13], and also in M.
Collot’s thesis [9], where the extension of the method to adaptive mesh refinements
is discussed.
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Appendix

In this paper we used several classical results which are quite well known. They
are recalled here.

Lemma 1. Let K be a triangle of a mesh family assumed to be regular (see Ciarlet
[8], and Girault and Raviart [16]). Then let h be the maximum length of the sides
of K. For any function ϕ ∈ H1(K), satisfying∫

K

ϕ = 0,

there exists a constant (say c) which is independent of both h and ϕ and such that
i) ‖ϕ‖0,K ≤ ch|ϕ|1,K .

Lemma 2 (Same hypothesis as in Lemma 1). For all ϕ ∈ L2(K) and K ∈ T h, let
Π0ϕ be defined by

Π0ϕ =
1

meas(K)

∫
K

ϕ,

then there exists a constant c which is independent of both h and ϕ and such that

‖ϕ−Π0ϕ‖0,K ≤ ch|ϕ|1,K .

Lemma 3. (Same hypothesis as in Lemma 1 but we also assume that the family
of triangulations is uniformly regular, as described by Girault and Raviart in [16]).
There exists a constant c which is independent of both h and ϕ and such that

‖ϕ‖0,∂K ≤ c
√
h|ϕ|1,K .
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1 avenue du Général de Gaulle, 92141 Clamart, France

E-mail address: brigitte.metivet@der.edfgdf.fr

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


