Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Meshless Galerkin methods
using radial basis functions

Author: Holger Wendland
Journal: Math. Comp. 68 (1999), 1521-1531
MSC (1991): Primary 35A40, 35J50, 41A25, 41A30, 41A63, 65N15, 65N30
Published electronically: March 4, 1999
MathSciNet review: 1648419
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We combine the theory of radial basis functions with the field of Galerkin methods to solve partial differential equations. After a general description of the method we show convergence and derive error estimates for smooth problems in arbitrary dimensions.

References [Enhancements On Off] (What's this?)

  • 1. Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
  • 2. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, Meshless methods: an overview and recent developments, Computer Methods in Applied Mechanics and Engineering, special issue on Meshless Methods, vol 139 (1996), pp 3- 47.
  • 3. Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258
  • 4. Julio G. Dix and Robert D. Ogden, An interpolation scheme with radial basis in Sobolev spaces 𝐻^{𝑠}(𝑅ⁿ), Rocky Mountain J. Math. 24 (1994), no. 4, 1319–1337. MR 1322230,
  • 5. Jean Duchon, Sur l’erreur d’interpolation des fonctions de plusieurs variables par les 𝐷^{𝑚}-splines, RAIRO Anal. Numér. 12 (1978), no. 4, 325–334, vi (French, with English summary). MR 519016,
  • 6. N. Dyn, Interpolation and approximation by radial and related functions, Approximation theory VI, Vol. I (College Station, TX, 1989) Academic Press, Boston, MA, 1989, pp. 211–234. MR 1090994
  • 7. W. R. Madych and S. A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl. 4 (1988), no. 4, 77–89. MR 986343
  • 8. Will Light (ed.), Advances in numerical analysis. Vol. II, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992. Wavelets, subdivision algorithms, and radial basis functions. MR 1172118
  • 9. Eduard Prugovečki, Quantum mechanics in Hilbert space, Academic Press, New York-London, 1971. Pure and Applied Mathematics, Vol. 41. MR 0495809
  • 10. R. Schaback, Creating surfaces from scattered data using radial basis functions, Mathematical methods for curves and surfaces (Ulvik, 1994) Vanderbilt Univ. Press, Nashville, TN, 1995, pp. 477–496. MR 1356989
  • 11. Robert Schaback, Multivariate interpolation and approximation by translates of a basis function, Approximation theory VIII, Vol. 1 (College Station, TX, 1995) Ser. Approx. Decompos., vol. 6, World Sci. Publ., River Edge, NJ, 1995, pp. 491–514. MR 1471761
  • 12. R. Schaback, Approximation by radial basis functions with finitely many centers, Constr. Approx. 12 (1996), no. 3, 331–340. MR 1405002,
  • 13. Robert Schaback and Z. Wu, Operators on radial functions, J. Comput. Appl. Math. 73 (1996), no. 1-2, 257–270. MR 1424880,
  • 14. Holger Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math. 4 (1995), no. 4, 389–396. MR 1366510,
  • 15. H. Wendland, Sobolev-type error estimates for interpolation by radial basis functions, in: Surface Fitting and Multiresolution Methods, A. LeMéhauté, C. Rabut, L. L. Schumaker, eds., Vanderbilt University Press, Nashville, 1997, pp 337-344.
  • 16. H. Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, Journal of Approx. Theory 93 (1998), pp 258-272. CMP 98:11
  • 17. Zong Min Wu and Robert Schaback, Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993), no. 1, 13–27. MR 1199027,

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (1991): 35A40, 35J50, 41A25, 41A30, 41A63, 65N15, 65N30

Retrieve articles in all journals with MSC (1991): 35A40, 35J50, 41A25, 41A30, 41A63, 65N15, 65N30

Additional Information

Holger Wendland
Affiliation: Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Lotzestraße 16-18, D-37083 Göttingen, Germany

Keywords: Approximation orders, positive definite functions, PDE
Received by editor(s): April 1, 1997
Published electronically: March 4, 1999
Article copyright: © Copyright 1999 American Mathematical Society