Meshless Galerkin methods using radial basis functions
HTML articles powered by AMS MathViewer
- by Holger Wendland PDF
- Math. Comp. 68 (1999), 1521-1531 Request permission
Abstract:
We combine the theory of radial basis functions with the field of Galerkin methods to solve partial differential equations. After a general description of the method we show convergence and derive error estimates for smooth problems in arbitrary dimensions.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, Meshless methods: an overview and recent developments, Computer Methods in Applied Mechanics and Engineering, special issue on Meshless Methods, vol 139 (1996), pp 3- 47.
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Julio G. Dix and Robert D. Ogden, An interpolation scheme with radial basis in Sobolev spaces $H^s(\textbf {R}^n)$, Rocky Mountain J. Math. 24 (1994), no. 4, 1319–1337. MR 1322230, DOI 10.1216/rmjm/1181072340
- Jean Duchon, Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^{m}$-splines, RAIRO Anal. Numér. 12 (1978), no. 4, 325–334, vi (French, with English summary). MR 519016, DOI 10.1051/m2an/1978120403251
- N. Dyn, Interpolation and approximation by radial and related functions, Approximation theory VI, Vol. I (College Station, TX, 1989) Academic Press, Boston, MA, 1989, pp. 211–234. MR 1090994
- W. R. Madych and S. A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl. 4 (1988), no. 4, 77–89. MR 986343
- Will Light (ed.), Advances in numerical analysis. Vol. II, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992. Wavelets, subdivision algorithms, and radial basis functions. MR 1172118
- Eduard Prugovečki, Quantum mechanics in Hilbert space, Pure and Applied Mathematics, Vol. 41, Academic Press, New York-London, 1971. MR 0495809
- R. Schaback, Creating surfaces from scattered data using radial basis functions, Mathematical methods for curves and surfaces (Ulvik, 1994) Vanderbilt Univ. Press, Nashville, TN, 1995, pp. 477–496. MR 1356989
- Robert Schaback, Multivariate interpolation and approximation by translates of a basis function, Approximation theory VIII, Vol. 1 (College Station, TX, 1995) Ser. Approx. Decompos., vol. 6, World Sci. Publ., River Edge, NJ, 1995, pp. 491–514. MR 1471761
- R. Schaback, Approximation by radial basis functions with finitely many centers, Constr. Approx. 12 (1996), no. 3, 331–340. MR 1405002, DOI 10.1007/s003659900017
- Robert Schaback and Z. Wu, Operators on radial functions, J. Comput. Appl. Math. 73 (1996), no. 1-2, 257–270. MR 1424880, DOI 10.1016/0377-0427(96)00047-7
- Holger Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math. 4 (1995), no. 4, 389–396. MR 1366510, DOI 10.1007/BF02123482
- H. Wendland, Sobolev-type error estimates for interpolation by radial basis functions, in: Surface Fitting and Multiresolution Methods, A. LeMéhauté, C. Rabut, L. L. Schumaker, eds., Vanderbilt University Press, Nashville, 1997, pp 337-344.
- H. Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, Journal of Approx. Theory 93 (1998), pp 258-272.
- Zong Min Wu and Robert Schaback, Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993), no. 1, 13–27. MR 1199027, DOI 10.1093/imanum/13.1.13
Additional Information
- Holger Wendland
- Affiliation: Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Lotzestraße 16-18, D-37083 Göttingen, Germany
- MR Author ID: 602098
- Email: wendland@math.uni-goettingen.de
- Received by editor(s): April 1, 1997
- Published electronically: March 4, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp. 68 (1999), 1521-1531
- MSC (1991): Primary 35A40, 35J50, 41A25, 41A30, 41A63, 65N15, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-99-01102-3
- MathSciNet review: 1648419