Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Meshless Galerkin methods using radial basis functions
HTML articles powered by AMS MathViewer

by Holger Wendland PDF
Math. Comp. 68 (1999), 1521-1531 Request permission

Abstract:

We combine the theory of radial basis functions with the field of Galerkin methods to solve partial differential equations. After a general description of the method we show convergence and derive error estimates for smooth problems in arbitrary dimensions.
References
  • Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
  • T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, Meshless methods: an overview and recent developments, Computer Methods in Applied Mechanics and Engineering, special issue on Meshless Methods, vol 139 (1996), pp 3- 47.
  • Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
  • Julio G. Dix and Robert D. Ogden, An interpolation scheme with radial basis in Sobolev spaces $H^s(\textbf {R}^n)$, Rocky Mountain J. Math. 24 (1994), no. 4, 1319–1337. MR 1322230, DOI 10.1216/rmjm/1181072340
  • Jean Duchon, Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^{m}$-splines, RAIRO Anal. Numér. 12 (1978), no. 4, 325–334, vi (French, with English summary). MR 519016, DOI 10.1051/m2an/1978120403251
  • N. Dyn, Interpolation and approximation by radial and related functions, Approximation theory VI, Vol. I (College Station, TX, 1989) Academic Press, Boston, MA, 1989, pp. 211–234. MR 1090994
  • W. R. Madych and S. A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl. 4 (1988), no. 4, 77–89. MR 986343
  • Will Light (ed.), Advances in numerical analysis. Vol. II, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992. Wavelets, subdivision algorithms, and radial basis functions. MR 1172118
  • Eduard Prugovečki, Quantum mechanics in Hilbert space, Pure and Applied Mathematics, Vol. 41, Academic Press, New York-London, 1971. MR 0495809
  • R. Schaback, Creating surfaces from scattered data using radial basis functions, Mathematical methods for curves and surfaces (Ulvik, 1994) Vanderbilt Univ. Press, Nashville, TN, 1995, pp. 477–496. MR 1356989
  • Robert Schaback, Multivariate interpolation and approximation by translates of a basis function, Approximation theory VIII, Vol. 1 (College Station, TX, 1995) Ser. Approx. Decompos., vol. 6, World Sci. Publ., River Edge, NJ, 1995, pp. 491–514. MR 1471761
  • R. Schaback, Approximation by radial basis functions with finitely many centers, Constr. Approx. 12 (1996), no. 3, 331–340. MR 1405002, DOI 10.1007/s003659900017
  • Robert Schaback and Z. Wu, Operators on radial functions, J. Comput. Appl. Math. 73 (1996), no. 1-2, 257–270. MR 1424880, DOI 10.1016/0377-0427(96)00047-7
  • Holger Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math. 4 (1995), no. 4, 389–396. MR 1366510, DOI 10.1007/BF02123482
  • H. Wendland, Sobolev-type error estimates for interpolation by radial basis functions, in: Surface Fitting and Multiresolution Methods, A. LeMéhauté, C. Rabut, L. L. Schumaker, eds., Vanderbilt University Press, Nashville, 1997, pp 337-344.
  • H. Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, Journal of Approx. Theory 93 (1998), pp 258-272.
  • Zong Min Wu and Robert Schaback, Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993), no. 1, 13–27. MR 1199027, DOI 10.1093/imanum/13.1.13
Similar Articles
Additional Information
  • Holger Wendland
  • Affiliation: Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Lotzestraße 16-18, D-37083 Göttingen, Germany
  • MR Author ID: 602098
  • Email: wendland@math.uni-goettingen.de
  • Received by editor(s): April 1, 1997
  • Published electronically: March 4, 1999
  • © Copyright 1999 American Mathematical Society
  • Journal: Math. Comp. 68 (1999), 1521-1531
  • MSC (1991): Primary 35A40, 35J50, 41A25, 41A30, 41A63, 65N15, 65N30
  • DOI: https://doi.org/10.1090/S0025-5718-99-01102-3
  • MathSciNet review: 1648419