Prime clusters and Cunningham chains
Author:
Tony Forbes
Journal:
Math. Comp. 68 (1999), 1739-1747
MSC (1991):
Primary 11A41, 11Y11
DOI:
https://doi.org/10.1090/S0025-5718-99-01117-5
Published electronically:
May 24, 1999
MathSciNet review:
1651752
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We discuss the methods and results of a search for certain types of prime clusters. In particular, we report specific examples of prime 16-tuplets and Cunningham chains of length 14.
- 1. L. E. Dickson, A new extension of Dirichlet's theorem on prime numbers, Messenger of Mathematics 33 (1904), 155-161.
- 2. G. H. Hardy and J. E. Littlewood, Some problems of `Partitio Numerorum'; III: On the expression of a number as a sum of primes, Acta Math. 44 (1922), 1-70.
- 3. Douglas Hensley and Ian Richards, Primes in intervals, Acta Arith. 25 (1973/74), 375–391. MR 396440, https://doi.org/10.4064/aa-25-4-375-391
- 4. D. M. Gordon and G. Rodemich, Dense admissible sets, Algorithmic Number Theory: III; Lecture Notes in Computer Science, Volume 1423, Springer Verlag, Berlin, 1998.
- 5. C. K. Caldwell and H. Dubner, Primorial, factorial and multifactorial primes, Math. Spectrum 26 (1993/94), 1-7.
- 6. Karl-Heinz Indlekofer and Antal Járai, Largest known twin primes, Math. Comp. 65 (1996), no. 213, 427–428. MR 1320896, https://doi.org/10.1090/S0025-5718-96-00666-7
- 7. Tony Forbes, Large prime triplets, Math. Spectrum 29 (1996/97), 65.
- 8. Warut Roonguthai, Large prime quadruplets, M500 153 (December 1996), 4-5.
- 9. A. O. L. Atkin, Personal communications, 9 June 1997 and earlier.
- 10. John Brillhart, D. H. Lehmer, and J. L. Selfridge, New primality criteria and factorizations of 2^{𝑚}±1, Math. Comp. 29 (1975), 620–647. MR 384673, https://doi.org/10.1090/S0025-5718-1975-0384673-1
- 11. John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr., Factorizations of 𝑏ⁿ±1, 2nd ed., Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, RI, 1988. 𝑏=2,3,5,6,7,10,11,12 up to high powers. MR 996414
- 12. Richard K. Guy, Unsolved problems in number theory, 2nd ed., Problem Books in Mathematics, Springer-Verlag, New York, 1994. Unsolved Problems in Intuitive Mathematics, I. MR 1299330
- 13.
Tony Forbes, Prime
-tuplets-15, M500 156 (July 1997), 14-15.
- 14. Günter Löh, Long chains of nearly doubled primes, Math. Comp. 53 (1989), no. 188, 751–759. MR 979939, https://doi.org/10.1090/S0025-5718-1989-0979939-8
Retrieve articles in Mathematics of Computation with MSC (1991): 11A41, 11Y11
Retrieve articles in all journals with MSC (1991): 11A41, 11Y11
Additional Information
Tony Forbes
Affiliation:
22 St. Albans Road, Kingston upon Thames, Surrey, KT2 5HQ England
DOI:
https://doi.org/10.1090/S0025-5718-99-01117-5
Received by editor(s):
July 24, 1997
Published electronically:
May 24, 1999
Article copyright:
© Copyright 1999
American Mathematical Society