Iterative solution of two matrix equations

Authors:
Chun-Hua Guo and Peter Lancaster

Journal:
Math. Comp. **68** (1999), 1589-1603

MSC (1991):
Primary 15A24, 65F10; Secondary 65H10, 93B40

DOI:
https://doi.org/10.1090/S0025-5718-99-01122-9

Published electronically:
April 7, 1999

MathSciNet review:
1651757

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study iterative methods for finding the maximal Hermitian positive definite solutions of the matrix equations and , where is Hermitian positive definite. General convergence results are given for the basic fixed point iteration for both equations. Newton's method and inversion free variants of the basic fixed point iteration are discussed in some detail for the first equation. Numerical results are reported to illustrate the convergence behaviour of various algorithms.

**1.**W. N. Anderson Jr., T. D. Morley, and G. E. Trapp,*Positive solutions to 𝑋=𝐴-𝐵𝑋⁻¹𝐵**, Linear Algebra Appl.**134**(1990), 53–62. MR**1060009**, https://doi.org/10.1016/0024-3795(90)90005-W**2.**Jacob C. Engwerda,*On the existence of a positive definite solution of the matrix equation 𝑋+𝐴^{𝖳}𝖷⁻¹𝖠=𝖨*, Linear Algebra Appl.**194**(1993), 91–108. MR**1243822**, https://doi.org/10.1016/0024-3795(93)90115-5**3.**Jacob C. Engwerda, André C. M. Ran, and Arie L. Rijkeboer,*Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation 𝑋+𝐴*𝑋⁻¹𝐴=𝑄*, Linear Algebra Appl.**186**(1993), 255–275. MR**1217209**, https://doi.org/10.1016/0024-3795(93)90295-Y**4.**Augusto Ferrante and Bernard C. Levy,*Hermitian solutions of the equation 𝑋=𝑄+𝑁𝑋⁻¹𝑁**, Linear Algebra Appl.**247**(1996), 359–373. MR**1412761**, https://doi.org/10.1016/0024-3795(95)00121-2**5.**J. D. Gardiner, A. J. Laub, J. J. Amato, and C. B. Moler,*Solution of the Sylvester matrix equation*, ACM Trans. Math. Software**18**(1992), 223-231. CMP**92:13****6.**Julio F. Fernández and Juan Rivero,*A fast algorithm for the generation of random numbers with exponential and normal distributions*, Computational physics (Granada, 1994) Lecture Notes in Phys., vol. 448, Springer, Berlin, 1995, pp. 201–209. MR**1356943**, https://doi.org/10.1007/3-540-59178-8_32**7.**C.-H. Guo,*Newton's method for discrete algebraic Riccati equations when the closed-loop matrix has eigenvalues on the unit circle*, SIAM J. Matrix Anal. Appl.**20**(1999), 279-294. CMP**99:02****8.**G. A. Hewer,*An iterative technique for the computation of the steady-state gains for the discrete optimal regulator*, IEEE Trans. Autom. Control**16**(1971), 382-384.**9.**Roger A. Horn and Charles R. Johnson,*Topics in matrix analysis*, Cambridge University Press, Cambridge, 1991. MR**1091716****10.**M. A. Krasnosel′skiĭ, G. M. Vaĭnikko, P. P. Zabreĭko, Ya. B. Rutitskii, and V. Ya. Stetsenko,*Approximate solution of operator equations*, Wolters-Noordhoff Publishing, Groningen, 1972. Translated from the Russian by D. Louvish. MR**0385655****11.**Peter Lancaster and Leiba Rodman,*Algebraic Riccati equations*, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. MR**1367089****12.**Peter Lancaster and Miron Tismenetsky,*The theory of matrices*, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1985. MR**792300****13.**J. M. Ortega and W. C. Rheinboldt,*Iterative solution of nonlinear equations in several variables*, Academic Press, New York-London, 1970. MR**0273810****14.**A. C. M. Ran and R. Vreugdenhil,*Existence and comparison theorems for algebraic Riccati equations for continuous- and discrete-time systems*, Linear Algebra Appl.**99**(1988), 63–83. MR**925150**, https://doi.org/10.1016/0024-3795(88)90125-5**15.**P. Van Dooren,*Erratum: “A generalized eigenvalue approach for solving Riccati equations” [SIAM J. Sci. Statist. Comput. 2 (1981), no. 2, 121–135; MR0622709 (83h:65052)]*, SIAM J. Sci. Statist. Comput.**4**(1983), no. 4, 787. MR**725668**, https://doi.org/10.1137/0904054**16.**Xingzhi Zhan,*Computing the extremal positive definite solutions of a matrix equation*, SIAM J. Sci. Comput.**17**(1996), no. 5, 1167–1174. MR**1404867**, https://doi.org/10.1137/S1064827594277041**17.**Xingzhi Zhan and Jianjun Xie,*On the matrix equation 𝑋+𝐴^{𝖳}𝖷⁻¹𝖠=𝖨*, Linear Algebra Appl.**247**(1996), 337–345. MR**1412759**, https://doi.org/10.1016/0024-3795(95)00120-4

Retrieve articles in *Mathematics of Computation*
with MSC (1991):
15A24,
65F10,
65H10,
93B40

Retrieve articles in all journals with MSC (1991): 15A24, 65F10, 65H10, 93B40

Additional Information

**Chun-Hua Guo**

Affiliation:
Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Address at time of publication:
Department of Computer Science, University of California, Davis, California 95616-8562

Email:
guo@cs.ucdavis.edu

**Peter Lancaster**

Affiliation:
Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Email:
lancaste@ucalgary.ca

DOI:
https://doi.org/10.1090/S0025-5718-99-01122-9

Keywords:
Matrix equations,
positive definite solution,
fixed point iteration,
Newton's method,
convergence rate,
matrix pencils

Received by editor(s):
January 22, 1998

Published electronically:
April 7, 1999

Article copyright:
© Copyright 1999
American Mathematical Society