Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Canonical construction of finite elements
HTML articles powered by AMS MathViewer

by R. Hiptmair PDF
Math. Comp. 68 (1999), 1325-1346 Request permission

Abstract:

The mixed variational formulation of many elliptic boundary value problems involves vector valued function spaces, like, in three dimensions, $\boldsymbol H(\mathbf {\operatorname {curl}};\Omega )$ and ${{\boldsymbol H}(\operatorname {Div};\Omega )}$. Thus finite element subspaces of these function spaces are indispensable for effective finite element discretization schemes. Given a simplicial triangulation of the computational domain $\Omega$, among others, Raviart, Thomas and Nédélec have found suitable conforming finite elements for $\boldsymbol H(\operatorname {Div};\Omega )$ and $\boldsymbol H(\mathbf {\operatorname {curl}};\Omega )$. At first glance, it is hard to detect a common guiding principle behind these approaches. We take a fresh look at the construction of the finite spaces, viewing them from the angle of differential forms. This is motivated by the well-known relationships between differential forms and differential operators: $\operatorname {div}$, $\operatorname {\mathbf {curl}}$ and $\operatorname {\mathbf {grad}}$ can all be regarded as special incarnations of the exterior derivative of a differential form. Moreover, in the realm of differential forms most concepts are basically dimension-independent. Thus, we arrive at a fairly canonical procedure to construct conforming finite element subspaces of function spaces related to differential forms. In any dimension we can give a simple characterization of the local polynomial spaces and degrees of freedom underlying the definition of the finite element spaces. With unprecedented ease we can recover the familiar $\boldsymbol H (\operatorname {Div};\Omega )$- and $\boldsymbol H(\mathbf {\operatorname {curl}};\Omega )$-conforming finite elements, and establish the unisolvence of degrees of freedom. In addition, the use of differential forms makes it possible to establish crucial algebraic properties of the canonical interpolation operators and representation theorems in a single sweep for all kinds of spaces.
References
  • Douglas N. Arnold, Richard S. Falk, and R. Winther, Preconditioning in $H(\textrm {div})$ and applications, Math. Comp. 66 (1997), no. 219, 957–984. MR 1401938, DOI 10.1090/S0025-5718-97-00826-0
  • D. Baldomir, Differential forms and electromagnetism in 3-dimensional Euclidean space $\mathbb {R}^3$., IEE Proc. A, 133 (1986), pp. 139–143.
  • A. Bossavit, A rationale for edge elements in 3D field computations, IEEE Trans. Mag., 24 (1988), pp. 74–79.
  • A. Bossavit, Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism, IEE Proc. A, 135 (1988), pp. 493–500.
  • A. Bossavit, A new viewpoint on mixed elements, Meccanica, 27 (1992), pp. 3–11.
  • A. Bossavit, Électromagnétisme, en vue de la modélisation, Springer-Verlag, Paris, 1993.
  • A. Bossavit, Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements, no. 2 in Academic Press Electromagnetism Series, Academic Press, San Diego, 1998.
  • Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
  • Franco Brezzi, Jim Douglas Jr., Ricardo Durán, and Michel Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51 (1987), no. 2, 237–250. MR 890035, DOI 10.1007/BF01396752
  • Franco Brezzi, Jim Douglas Jr., Michel Fortin, and L. Donatella Marini, Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 4, 581–604 (English, with French summary). MR 921828, DOI 10.1051/m2an/1987210405811
  • Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
  • Z. Cai, R. Parashkevov, T. Russel, and X. Ye, Domain decomposition for a mixed finite element method in three dimensions, in Proc. 9th Internat. Conf. Domain Decomposition Methods, Bergen, Norway, 1996 (to appear).
  • Henri Cartan, Formes différentielles. Applications élémentaires au calcul des variations et à la théorie des courbes et des surfaces, Hermann, Paris, 1967 (French). MR 0231303
  • Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
  • G. Deschamps, Electromagnetics and differential forms, Proc IEEE, 69 (1981), pp. 676–695.
  • Jim Douglas Jr. and Jean E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39–52. MR 771029, DOI 10.1090/S0025-5718-1985-0771029-9
  • R. E. Ewing and J. Wang, Analysis of the Schwarz algorithm for mixed finite elements methods, RAIRO Modél. Math. Anal. Numér. 26 (1992), no. 6, 739–756 (English, with English and French summaries). MR 1183415, DOI 10.1051/m2an/1992260607391
  • V. Girault, Curl-conforming finite element methods for Navier-Stokes equations with nonstandard boundary conditions in $\textbf {R}^3$, The Navier-Stokes equations (Oberwolfach, 1988) Lecture Notes in Math., vol. 1431, Springer, Berlin, 1990, pp. 201–218. MR 1072191, DOI 10.1007/BFb0086071
  • Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
  • R. Hiptmair, Multigrid method for Maxwell’s equations, SIAM J. Numer. Anal. 36 (1999), 204–225.
  • R. Hiptmair and R. Hoppe, Multilevel preconditioning for mixed problems in three dimensions, Tech. Rep. 359, Mathematisches Institut, Universität Augsburg, 1996. to appear in Numer. Math.
  • R. Hiptmair and A. Toselli, Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions., in Parallel Solution of PDEs, IMA Volumes in Mathematics and its Applications, Springer, Berlin, 1998. to appear.
  • R. Hoppe and B. Wohlmuth, A comparison of a posteriori error estimators for mixed finite elements, Tech. Rep. 350, Math.-Nat. Fakultät, Universität Augsburg, 1996. to appear in Math. Comp.
  • E. F. Kaasschieter and A. J. M. Huijben, Mixed-hybrid finite elements and streamline computation for the potential flow problem, Numer. Methods Partial Differential Equations 8 (1992), no. 3, 221–266. MR 1158244, DOI 10.1002/num.1690080302
  • K. Mahadevan and R. Mitta, Use of Whitney’s edge and face elements for efficient finite element time domain solution of Maxwell’s equations, J. Electromagn. Waves Appl., 8 (1994), pp. 1173–1191.
  • J.-C. Nédélec, Mixed finite elements in $\textbf {R}^{3}$, Numer. Math. 35 (1980), no. 3, 315–341. MR 592160, DOI 10.1007/BF01396415
  • J.-C. Nédélec, A new family of mixed finite elements in $\textbf {R}^3$, Numer. Math. 50 (1986), no. 1, 57–81. MR 864305, DOI 10.1007/BF01389668
  • P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 292–315. MR 0483555
  • Panayot S. Vassilevski and Jun Ping Wang, Multilevel iterative methods for mixed finite element discretizations of elliptic problems, Numer. Math. 63 (1992), no. 4, 503–520. MR 1189534, DOI 10.1007/BF01385872
  • A. Walsleben, Whitney Elemente zur Diskretisierung der Maxwell-Gleichungen, Master’s thesis, Institut für Mathematik I, Freie Universität Berlin, 1996.
  • Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (1991): 65N30, 41A10, 58A15
  • Retrieve articles in all journals with MSC (1991): 65N30, 41A10, 58A15
Additional Information
  • R. Hiptmair
  • Affiliation: Sonderforschungsbereich 382, Universität Tübingen, 72076 Tübingen, Germany
  • Email: hiptmair@na.uni-tuebingen.de
  • Received by editor(s): January 23, 1997
  • Received by editor(s) in revised form: November 10, 1997
  • Published electronically: May 20, 1999
  • © Copyright 1999 American Mathematical Society
  • Journal: Math. Comp. 68 (1999), 1325-1346
  • MSC (1991): Primary 65N30, 41A10, 58A15
  • DOI: https://doi.org/10.1090/S0025-5718-99-01166-7
  • MathSciNet review: 1665954