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OPTIMAL CONVERGENCE
FOR THE FINITE ELEMENT METHOD
IN CAMPANATO SPACES

GEORG DOLZMANN

ABSTRACT. We prove a priori estimates and optimal error estimates for lin-
ear finite element approximations of elliptic systems in divergence form with
continuous coefficients in Campanato spaces. The proofs rely on discrete ana-
logues of the Campanato inequalities for the solution of the system, which
locally measure the decay of the energy. As an application of our results we
derive W1P—estimates and give a new proof of the well-known W1 *°—results
of Rannacher and Scott.

1. INTRODUCTION

In this paper, we present a new approach to a priori estimates and error estimates
for finite element solutions of linear elliptic systems of second order with continuous
coefficients. Our results rely on an extension of the by now classical Campanato
space methods in elliptic theory, which provide a powerful tool to prove regularity
based on L? estimates rather than on an investigation of the fundamental solution.
Estimates in the energy norm follow naturally from the variational structure of the

problem.
We consider the elliptic system
(1.1) —div(ADu) = —divF in Q,

where u € Wy ?(;R™) and A satisfies the Legendre-Hadamard condition (see
Sections 2 and 3 for the notation used in the introduction). Assume that up €
Sh(,) is a solution of the corresponding weak formulation

a(un, ¥n) = /QFDthdZE Vaby, € S (),

where SP(€2;,) is the space of piecewise affine and globally continuous functions on
a quasiuniform triangulation €, of  and a(-, -) is the bilinear form associated with
A. Our first result concerns a priori estimates for Duy in Morrey and Campanato
spaces. In particular we prove the following bound on Duy, in the Campanato space
L£?™ which is isomorphic to the space of functions of bounded mean oscillation
studied in [JN]:
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Theorem 1.1. Assume that Q is smooth, A € C%? for some o > 0, and F €
L2™(Q). Then Duy, € L>™(S2), and we have the a priori estimate

| Dunllzzn oy < en(llunllzn, + 1Fllc2ncan) ).

The second main result is the following error estimate for the gradient of the
finite element solution wuy,.

Theorem 1.2. Assume that Q2 is smooth, A € C%?, and the system (1.1) has a
unique solution. Let F € L>™(Q) and define e, = u — up. Then

||DehH£2,n(Qh) <e¢, inf ||Du — thH£2,n(Qh).
thS(}f

The importance of estimates in £>" arises from the fact that this space is a
natural substitute for L* in many results in real analysis. For example, if the
system has a unique solution, Stampacchia’s interpolation theorem [St] immediately
implies the following WP estimate:

Theorem 1.3. Assume that Q is smooth, A € C%? for some o > 0, and the system
(1.1) has a unique solution. Let F € LP(Q) with p € (2,00). Then Duy, € LP(Q),
and we have the a priori estimate

[Dunllen) < cpll Fllen)
as well as the error estimate

||Deh||LP(Qh) < inf . ||Du — thHLP(Qh).
h 0

As a further application of the £*"—estimates we show in Section 7 how one
can obtain optimal W1 >—estimates for ej, thus generalizing the famous result by
Rannacher and Scott and the recent results in [SW2] to systems. This approach
allows one to obtain uniform estimates by exploiting the variational structure of
the problem, and does not rely on the weighted norm techniques first developed in
[Na].

There exists an extensive literature on error estimates for finite element methods
in various spaces. The question of whether optimal convergence holds in W1 has
been open for a long time and was finally solved by Rannacher and Scott in [RS].
Blum, Lin and Rannacher [BLR] showed in addition that in general the error u—uy,
is not of order O(h?) in L™ even if the data are smooth. The spaces L™ were used
in [R] to prove optimal estimates for Dej, up to a logarithmic factor, and in [Du2]
to show optimal convergence for ej, of order O(h?) in two dimensions. General
results in Orlicz spaces can be found in [Dul]. Schauder estimates for higher order
methods have been analyzed in [Ni], while a discussion of properties of solutions of
elliptic equations based on DeGiorgi’s ideas has been carried out in [AC].

The paper is organized as follows. In Sections 2 and 3 we introduce our notation
and summarize the basic results needed in the subsequent sections. We derive
an analogue of the Campanato inequalities for the finite element solution in the
interior situation in Section 4, while the boundary situation is analyzed in Section
5. These estimates allow us to obtain the a priori estimates and the error estimates
in Section 6, and uniform estimates are given in Section 7. Finally, the Appendix
gives the proofs of some well-known results in elliptic theory.

While carrying out this programme, we shall state explicitly the necessary as-
sumptions on the coefficients and the domain {2 C R™ which ensure that the solution
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has the required regularity; that regularity theory for elliptic systems is more sub-
tle than for elliptic equations can already be seen from the fact that there is no
analogue of DeGiorgi’s famous C%¢ regularity result for equations with L> coeffi-
cients. In addition, Garding’s inequality does not hold for L*° coefficients, see [Zh].
The approach towards regularity pursued here is unfortunately based on Hélder
continuity of the coefficients. We therefore do not recover the general estimates in
[BS] for equations in the scalar case.

2. PRELIMINARIES

Let Q C R™ be a convex, open and bounded domain and define Q(zg, R) =
B(zg, R) N Q. The convexity assumption is not related to regulartity properties
of the solution (in the scalar case it implies the square integrability of the second
derivatives); it only avoids extending the coefficients outside of Q. For methods
to treat nonconvex domains, see e.g. [SW1]. We say that 2 is a domain of class
Ck7 if for all xyp € 0N there exists a diffeomorphism v € C*7(B%;R") which
maps Bj, onto Q(zo, R) and T'r onto dQ(xo, R) N 0N. Here Bf = {z € R" :
|z < R, x, > 0} and Tp = {z € R" : |2| < R, x, = 0}. We say that 7}, is
a quasiuniform triangulation of 2 with n-simplices T if there exist constants oy,
o1 > 0 independent of h such that for each T' € 7}, there exist balls B(xg,o0h) and
B(z1,01h) with B(zg,00h) C T C B(x1,01h) (see [C] for details). Moreover we
assume that all nodes in 9§, are contained in 99Q. If Q is a domain of class C1+7,
then dist(zg, 0) < ch'™7 for all xy € 9€y,, where c is independent of h. For a given
triangulation 77, we define S”(€);,) as the space of all globally continuous functions
which are affine on the simplices T € 7Tj,, and we denote by SP the subspace of
all functions in S whose trace on 9, is zero. We use the standard notation for
the Lebesgue spaces LP, the Sobolev spaces W*? and the Holder spaces C*? with
norms || - ||p:as ||+ llk,p:0 and || - ||k,0:0, respectively. See Section 3 for the definition
of the Morrey and Campanato spaces and their fundamental properties.

In our proofs, we will use two interpolation operators onto S”: the standard
interpolation operator II;, defined as the linear interpolation of the nodal values of
a (continuous) function, and the operator Ilgz constructed in [SZ], which is based
on local averages. If W2P(Q) — C°(Q), then

(2.1) [w —hw|epr < Ch2_€||D2w||p;T
for all w € W2P(Qy,), while
(2.2) lw = szwlle2r < ch® || D*wl|3;s(r),

where S(T) = U{T": T'NT # 0} for all w € W*2(y,).
In this paper we study general elliptic systems of second order of the form

(2.3) —Do(AYDgw?) = —=Do F + f;,  i=1,....m,
where the coefficients Af}g satisfy the Legendre-Hadamard condition
(2.4) AP Ean’€ar’ > P I VEER™, neR™.

Here we use the summation convention. However, our analysis does not include
general systems which are elliptic in the sense of Agmon, Douglis and Nirenberg or
saddle point problems. The corresponding weak formulation is given by

(2.5) a(u, ) = F(¥) Vo€ Wy (Q)
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with
F($) = /Q (FDot’ + fip?)de.
We say that uy, € S{} is a finite element solution of the system if

(2.6) aun, ¥n) = F(n) Vo € SH(W).
Here the bilinear form a(-,-) on W12 x W2 associated with A is given by
a(u,v) = /QA%BDgujDavidz,
and we will use aj, to denote the bilinear form a restricted to Q:
ap(u,v) = A AiajﬂDgujDavidz.
h

The following result is a standard result in elliptic theory and can be found for
example in [Gi], Teorema 10.1.

Theorem 2.1 (Garding’s inequality). Assume that the coefficients Af‘jﬁ are uni-
formly continuous in @ and satisfy (2.4).
i) If the coefficients are constant, then there exists a constant p > 0 such that

(2.7) /A%BDgcijacpidx > u/ |Dy|?de Yo e Wy (Q).
Q Q

il) There exists an Ro > 0 such that (2.7) holds for all ¢ with diam(spt ¢) < Rp.
iii) There exist constants v, H > 0 such that

LA%ﬂDgijatpidx > V/Q |Dp|dx — H/Q |2 da Yo € W012(Q)

Throughout the paper all constants in the estimates depend only an n, m, Q, A
and the constant in Garding’s inequality (here we adopt the point of view that the
constants in the other usual inequalities like Poincaré’s inequality or the Sobolev
embedding theorem depend only on these quantities). In particular, they are inde-
pendent of h, u, F', f and the center xy of the balls Q(zq, R).

3. ELLIPTIC REGULARITY IN CAMPANATO SPACES

Assume that Q C R™ is an open domain, 1 < p < oo and A > 0. We define the
Morrey space LP**(€2) as the space of all functions u : © — R™ such that u € LP ()
and

1
Jul ey = sup sup - / P de < oo.
z0€Q 0<p<diam(Q2) €
Q(IO;Q)

The Campanato space £P*(2) is the space of all functions u € LP(Q2) for which
1
[u]) \ = sup sup — / [t — (W) gg,0]? dr < 0.
’ 20€Q 0< p<diam(Q) €
Q(zo,0)

Here (4)z,r = ()0(z0,r) denotes the mean value of u on Q(xo, R):

1
(W)go,r = 7/ udz.
’ 12(z0, R)| Jor(zo,R)
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We endow £PXQ) with the norm [[ul|zoa@) = [|ullpo + [4]pa. Defined in
such a way, the Morrey and Campanato spaces are Banach spaces, and LP*(Q) is
isomorphic to £PA(Q) if 0 < A < n and the domain (2 is sufficiently smooth (in
general one needs that € is a domain of type A; see [Cal] for the precise definition).
Moreover, L£P*(€2) is isomorphic to C%7(Q) with o = A;f" for A € (n,n + pl,
while £P"(Q) is isomorphic to BMO(2), the space of functions with bounded mean
oscillation which was defined in the fundamental paper by John and Nirenberg [JN].
For more information about these spaces, see e.g. [KJF].

Starting from Campanato’s paper [Cal], a complete regularity theory for elliptic
equations and systems has been developed (see, e.g. [Ca2], [Gi], [G]). We summarize
the relevant results in the following two theorems (see [Gi], Capitolo 10). Part ) in
Theorem 3.1 follows by contradiction from the estimates in parts i) and i), since in
this situation the homogeneous equation has only the trivial solution. Throughout
the paper we write A — 2 instead of (A — 2)T = max{\ —2,0}.

Theorem 3.1. Assume that the coefficients A%—B satisfy the Legendre-Hadamard
condition (2.4). Let u € W, *(Q) be a weak solution of (2.5).
i) Suppose Q is a domain of class C' and that Af}g € C%Q). If X € [0,n),
F € L*MQ) and f € L**~2(Q), then Du € L**(Q) and we have the a priori
estimate

|Dull 2oy < el

20+ [ fllzer-2e) + [Pl )-

ii) Suppose that Q is a domain of class C*° and Af‘jﬁ € C%(Q). If F € L)
and f € L>*~2(Q) with A < n + 20, then Du € L2*(Q) and we have

| Dull 2oy < el

20+ | fllz2r-20) + [ Fllezne )-

iit) If the system has a unique solution, then the a priori estimates in i) and ii)
hold without the norm of u on the right hand side.

A similar result holds for the higher derivatives of u.

Theorem 3.2. Assume € is a domain of class C**1 (C*+1:9) and that the coeffi-
cients Aiajﬂ € Ck(Q) (C*7(Q)) satisfy the Legendre-Hadamard condition (2.4). Let
u € Wy(Q) be a weak solution of (2.5) and k > 1. Suppose that D*F € L>*()
(resp. L2MQ)) and DF=1f € L2MQ) with A € (0,n) (resp. L3NQ) with A <
n+20). Then Dty € L2MNQ) (resp. L2*(2)), and we have the corresponding a
priori estimates.

The main ingredient in the proof of these regularity results is local decay es-
timates for the solution of the homogeneous system, which we will refer to as
Campanato inequalities.

Proposition 3.3. Assume that the coefficients Aiajﬁ(xo) satisfy (2.4) and that v is

a solution of the homogeneous system Da(A%B(xo)ngj) =0 in Q(xo, R).
i) If Q(zo, R) C Q, then for all0 < o < R

/ |D1}|2dx < C(%)n / |D1}|2d$,

Q(zo,0) Q(zo,R)
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and

n+2
[ 1o Do ufae () [ Do (Do), afde
Q(zo,0) Q(zo,R)
i) If xo € O and Q(xo, R) = B(xg, R)™ with v =0 on TR, then

/ |D1}|2dx < C(%)n / |D1}|2d$,

Q(zo,0) Q(zo,R)

and

0 n+2
/ |Dv — (Dpv)ag.o @ €n)?dr < C(E) |Dv — (D)o .r @ en|*da.
Q(zo,0) Q(zo0,R)
Remark. For systems with continuous coefficients one obtains a similar estimate
with an additional term w?(R) fﬂ(zo R) |Dv|?dx on the right hand side, where w

denotes the oscillation of the coefficients on Q(xg, R).

We define the following discrete analogues of the Morrey spaces L?*(£2) and
the Campanato spaces £2*(£2), where the radii in the definition are bounded from
below by h. A function u belongs to the discrete Morrey space Lfl’)‘(Q) if

1
Jul?,n = sup  sup / [ul? d < o,
h 20€Q h<p<diam(Q) €
Q(IO;Q)

and to the discrete Campanato space E’,’;’A(Q) if

1

[u]g,k;h = sup sup 3 / [t — () z,0|" dz < 00.
20€Q h<p<diam(Q) €

Q(zo,0)

The following lemma shows that a function uj, € S” is bounded in L?*(Q) if and
only if it is bounded in Li’)‘(Qh).
Lemma 3.4. Let up, € Sh, h > 0 small enough, and 0 < A < n.
i) If up € L,ZI”\(Q;L) with ||u||Lix < C, then uj, € L) and ||up 20 < C,
where C depends only o9, A\, n and C.
ii) The same statement holds also for Ei’A(Qh).

Proof. Assume that 0 < 9 < handlet T;,i=1,..., L, be the triangles T' € 7}, such
that T N Qp(zo, 0) # 0. To prove %), choose points z; € T; such that Qp(x;, oph) C
T;. Then

1
— / | Duy, |*dx
Qn(z0,0)
L
T N Q (0, 0)|M™ | T3 N D (i, 0) 1M 1 / 2
< D d
- Z; o (0oh)"=> " (goh)* [Dundz
B Qp (x4,00h)
<cLC,

where ¢ depends only on op, A and n. To prove i), choose for a given domain
Qn(x0, 0) the smallest radius ¢ such that Qy,(zg, 0) contains all triangles T; € 7},
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defined above. If zy € Qp and Qp(z9,8) N O, # 0, then replace Qp(zo, ) by a
domain €, (Zo, 2) such that g < ch and Qp(xo,8) C Q(To, ). Otherwise define
Zo = xo and g = 9. Then we conclude, as in case 7), that

1 c
= 1D~ (D) o < 25 / \Dup, — €2da
Qn(zo,0) Qn(xo0,0)
c
<5 | IDu-gtan
Qr(Zo,0)
and the assertion follows with £ = (Dup)z,,5- O

4. A POINTWISE INTERIOR ESTIMATE

The main result in this section is the pointwise estimate in Proposition 4.8. It
is based on the following analogues of the Campanato inequalities in Section 3 for
the finite element solution up on balls Q(zg, R) C Q. Throughout the rest of the
paper we will set

@) RuELR = [P Poeenfdo B [P
Qh($Q7R) Qh(w[hR)
and 7 denotes a nonnegative, continuous function such that n(t) < ct'/™ for n > 3

and 7(t) < c¢(p)t* for all p € (0,1) for n = 2. We denote the modulus of continuity
of the coefficients by w, i.e.

w(R)= sup sup sup |Af‘f(x) — Af‘jﬁ(xoﬂ.
|z—zo|<R ,B=1,...,n i,j=1,....m

Lemma 4.1. There exists a constant A > 0 such that for allh < o < R < Ry and
R > Ah the following inequalities hold:

/ | Duy, |2dx < c{ (g)n +w?(R) + n(%)} / |Dup,|*dx + ¢Ry,(F, f; R),

R
Q(z0,0) Q(zo,R)
n+2 h
_ 27 < o n _ 2
/ |[Dup, — (Dup) syl “da < c{(R) —l—n(R)} / |Dup, — (Dup,) g, r| dz
Q(z0,0) Q(zo,R)

+ cw?(R) / |Dup|?dz + ¢Ry(F, f; R).

Q(zo,R)

Here A is independent of xg, h, 0, R, u and uy,.

We split the proof into a series of lemmas. The idea is to decompose uy as a
sum (up — w) + w, where w € W12(Q(xg, R)) is the solution of the homogeneous
system with constant coefficients

(4.2) ap(w, ) = 0 Y e Wy (o, R)),
w = wp on IN(xg, R),
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and to use the Campanato estimate in Proposition 3.3 for w. Here ag denotes
the bilinear form with constant coefficients Af}g (o). It follows from w = wuy on
0 (zo, R) and the divergence theorem that

(4.3) / Dawidxz/ Dyuidr, i=1,....m,a=1,...,n.
Q(wo,R) Q($O7R)

We summarize the important properties of w in the following lemma.

Lemma 4.2. Assume that w is the solution of (4.2).

i) We have the a priori estimate

|Dw — €|?dz < ¢ / |Duy, — £|?dz V€ € R™™,
Q(z0,R) Q(z0,R)

ii) We have for k > 2 the Caccioppoli estimate

k,.,2 c 2 mn
/ |D*w|*dx < (= 07D / |Dw — &|*dx V& € R™.
Q(z0,0) Q(zo,R)

iii) We have the pointwise estimate

1
sup |D*w]? < <

P — |Dw — ¢|?dz V& € R™.
z€Q(xo0,0) (R - Q)Z(k R R /

Q(=zo,R)
Proof. In view of Garding’s inequality we obtain ) from ag(up — w,up, — w) =

ao(un, up, —w). The Caccioppoli estimate in ) is standard (see, e.g. [Gi]), and the
pointwise estimate follows from 4i) by Sobolev’s embedding theorem.

In order to obtain an estimate for Duj, — Dw we define
(44) 7/1 = <2(uh - ’UJ), 1/)h = lea

where ¢ > 0 is a smooth cut—off function such that ¢ = II;{ = 0 on R™\ Q(z, 3R),
¢ =1onQwo, L), and |D'(||oc < cR™* for i = 1,2 (R will be of order one, and
the existence of ¢ is thus clear for h small enough). The following estimate of the
difference 1 —1y, in the energy norm will be important. For n < 3 an estimate of this
type follows easily from the interpolation estimate (2.1). In arbitrary dimensions,
however, a direct computation is necessary.

Lemma 4.3. Let ¢ and v, be defined as in (4.4).

i) We have the local estimate

/ | Dep — Dapp|?dx < sup Cz(x){% / lup, — w|*dx + ch?|T| sup |D2w(x)|2}.
T zeT R T zeT
il) We have for all £ € R™" the global estimate

c h?
/ |Dyp — Dy |?da < 72 / lup — w|?dx + Cﬁ / |Dw — &2 da.
Q(zo,R) Q(zo,R) Q(zo,R)
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Proof. Clearly i) follows from 4) by Lemma 4.2. To prove i), let a;, i =1,...,n+
1, be the nodes of the simplex T and ®; the standard nodal basis of T, i.e.,
®;(a;) = 6;5. Then Iyw(x) = Z?jll ®;(z)w(a;) for all w € C°(T). We have
D1y =2¢D¢(up — w) + Cz(Duh — Dw), and thus

/|D1/)—D1/)h|2 < iz sup(2 /|uh—w| da:—l—c/ ¢?|Dw — DILw|*dx
T

+ c/ |2 (Duy, — DILyw) — Dby |*dex.
T

The second term is estimated by the interpolation inequality (2.1) with (p = o),
while by definition of ¥y,

/ |¢?(Duy, — DILyw) — Dy, |*dx
T
n+1

= /T | Z D;(x)(un — w)(ai)(¢*(x) — ¢*(as))|*dx

n+1 2
< 3 sup [Di(a) | un = w) o) PIT (sup () — C(a)])

1116

By assumption sup,cq, |D®;i(z)| < ch™! and sup,er [((2) — ((a;)| < co — a;]/R;
therefore
|

—a di T
sup ¢2(2) — ¢(a)| < 2 sup (@) + clag) < 2T up .
zeT xzeT xzeT

Since [, [vp|?dz and |T| 377 |vn(ai)|? are equivalent norms on T, we obtain
/ |¢*(Dup, — DILyw) — Dy [ da S 7 Sup CQ/ lup — w|*da,
T
and the assertion of the lemma follows easily. O

By (2.6) and (4.2) we obtain, since 1, € S,
a(up —w, ) = a(up —w, ¥ — Pp) + F(Yn) — (@ — ao)(w, ).
We estimate the different terms in the following lemmas.
Lemma 4.4. We have
a(up, —w,¥) > ¢ / ¢?|Duy, — Dw|*dx — R2 / lup, — w|?dz,
Q($E07R) Q(wo,R)

where the constant ¢ > 0 depends on the constant in Garding’s inequality.
Proof. A direct computation shows that

A5 D (= w?) D (¢ (uf, —w')) = AZ Dp(C (s, — ') D (¢ (uf, — )

+ A7 D (uf, — w?) Da(¢(u, — w')) = AG D¢ (s, —w?) D (¢ (uf, — w)).

By Garding’s inequality

a(up — w,) = 6/ [ D(C(un — w))[Pda — (mn)]Also| D |oolun — wl|2i00,m)

AlIcDun = Dw)llsagen,my + 1DCun =) 2001 |

and the assertion of the lemma follows easily from Young’s inequality. O
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Lemma 4.5. We have for e >0

atwn —ww—v)|<e [ Dy - Dufda
Q(wQ,R)
-l—c{ﬁ / |Du —f|2d:c—i-L / lu —w|2d:c}
R h eR2 h '
Q(mg,R) Q(:Eo,R)

Proof. Choose for each triangle T' € T}, a point 7 such that sup, o, ((z) = ((z7).
We have, by Holder’s inequality and Lemma 4.3,

|a’(uh - wﬂ/’ - 1/’h)|
< (mn)| Al Z |Dup, — Dwl
TNspt CAD

X
<c Y 10w~ Dulor { S s —wlair + TP sup | D20 .
TNspt CA0 xzeT

2.7|| DY — Db || 2,7

By definition

C(zr)||[Dup, — Dwll2,r < |((21) — () (Dup, — Dw)l|2;7 + [[((Dup, — Dw)||2;r

X)) — X
< sup BEO =C@DN Dy, — Dol + [C(Dun — Duw)lair
zeT |11? - $T|
diam (7T
< BTy b Do + (D — D)y

R

and therefore we obtain

> D - Dufar

TNspt CA£0

h 1
<c Y, 72 |1 Pun = Dwllzrlun — wilar + Fll¢(Dun = Dw)llzir|un — w
TNspt A0

lun — wll2;r

2;T
h2
<e / ¢?|Duy, — Dw|*dx + ‘3 / |Duy, — Dw|*dx + — / Jun — wl*da.

eR?
Q(IEQ7R) Q(wo,R) Q(wo,R)

On the other hand, we obtain by Lemma 4.2

Z || Dup, — Dwl

2.7h|T|Y? sup | D2w|
zeT

TNspt (A0
h
<c— / |Dup, — Dw|?dx + chR|Q(xo, R)|  sup  |D*w|?
R z€Q(z0,2 R)
Q(IEQ7R)
< cﬁ / |Du —Dw|2d:1c—|—cE / |Dw — ¢)?dx
=R h R 3
Q(mg,R) Q(mf))R)

and the assertion of the lemma follows easily in view of Lemma 4.2. O
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Lemma 4.6. We have
|F(¥n) = (a — ao)(w,¥n)|

<t{om [ puPdetRu(F iR}
Q($O7R)

—|—8{ / ¢?|Duy, — Dw|*dx
Q($O7R)

+ % / lup — w|?dx + (%)2 / | Duy, — €|2dx}.
Q(z0,R) Q(z0,R)
Proof. Since ¢y, € Wy > (Qp(z0, R)), we have by definition
| F(¥n) = (a = ao)(w, ¥n)| < [ DVnll2:0(0,r)
: (IIF— (F), (a0 m)]
By the triangle inequality
I DYn 3.0 < 2Dy — Dynl3.0 + 2| DY [l3.q,

and the assertion of the lemma follows easily in view of Lemmas 4.3 and 4.2. [

2. (z0,R) T B fll2:0 (20,r) + m?”M(R)llleb;ﬂ(mo,R))

If we combine the inequalities in the above lemmas with the estimates in Lemma
4.2, we obtain the following inequality:

¢*|Duy, — Dw|*dx

Q(z0,R)
(4.5) < c{% / |Dup, — (Dup) o rl*dz + Ri(F, f; R)
Q(zo,R)
1 2 2 2
o / lup — w|?dz + o (R) / (D .
(w0, R) Q(z0.R)

It therefore remains to estimate ||up — wl||. This is done in the following lemma
with a duality argument.

Lemma 4.7. There exists a constant A > 0 such that for all R with R > Ah the
following inequality holds:

h
/ lup, — w|?dz < U(R)RQ / | Duy, — Dwl|?dx
Q(wo,R) Q($Q7R)
+cR2{w2(R) / |Dw|2dx+Rh(F,f;R)}.

Q($O7R)
Remark. Let v € W, (Q(x0, R)) be the solution of
—Do (AP Dgv?) = =D FP + f;
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with F € W2(Q(zo, R)), f € L*(Q(z0, R)), and Lipschitz continuous coefficients.
Then v € W22(Q(zo, R)) (see, e.g., [Gi], Teorema 10.6) and by homogeneity
(4.6) [vll2:0¢0,r) + BIDV2:000,R) + B2 I1D*0l|250220,m)
< (R f 2o, r) + RIF = (F)ao,rll2:0(0,1))-

This scaling is expressed in the inequality above, since uj, — w € Wy *(Q(x0, R))
solves approximately the system

—Do(AY Dg(ul, —w’)) = —Do(Ff + (A3 — A

&) (20)) Dpw’) + fi.

Proof. We give the proof for n > 3 (for n = 2 use Holder’s inequality to deduce an
analogue of (4.7) below). We will show that for 4, € > 0

lup, — w|?dx
Q(=zo,R)
< eR? / |Duy, — Dw|*dx + (E (E)Q/n + 5) / lup, — w|*dx
- e\R
Q($O7R) Q($E07R)
Craf 2 2
+ SRRy / |DuPde + Ri(F, f: R) )
Q($O7R)

the assertion of the lemma follows with € = (%)1/ " and 4, % small enough.
Let z € Wy*(Q(z0, R)) be the solution of the adjoint system
—Da(Aff‘Dﬁzj) =l —w'.

Then z € W22(Q(xg, R)), and the estimate (4.6) holds with f = u;, —w and F = 0.
Let r € (0, &), and choose a cut—off function 7 such that 7 = 1 on Q(z9, R—7), 7 =0
on R™\ Q(x¢, R) and |Dit|s < ch™% for i =1,2. Let A, = Q(zo, R) \ Q(z0, R —1).
We fix r = ch such that 7 = IIgz7 = 0 on R"™ \ Q(zo, R). By Hoélder’s inequality,
the Sobolev embedding theorem, and (4.6)

(4.7) 1D2ll2ia, <[4 | D2l 20/ 1262000, )

1
< |4, (F D=l mnm) + 1Dl 200w0 )

h\1l/n
< CR(}_%) ”uh - w“Q;Q(mg,R)'
By definition of z
/ lup, — w|?dr = / A?iaDngDa(u}il —w")(1 —7)dx
Q(wo,R) Q(wo,R)
+ / A?io‘Dgsza(ufI —w')Tdx.
Q(wo,R)
The first term is easily estimated, since by (4.7)
(mn)|Als || D224, | Dun — Dwl|2;a,

h\1l/n
< (mn)|AleeR () llun = iz, | Dn = Dulls o 1
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We rewrite the second term in view of (2.6) and (4.2) as
(4.8) alup, —w, 7z — gz (72)) — (a — ao)(w, sz (72)) + F(lgz(7%))
— / Aff‘DgszDa(ufI —w')dz.
Q(:Eo,R)

We use the interpolation inequality to estimate the first term in (4.8):

alup, —w, 7z —lgz(12)) < ¢ Z h||D*(72)||2,5(1) || Dus, — Dwl|

;T
TNspt 7#£0
2 - 2 ﬁ 2 2
<eR |Dup, — Dw|*dx + B |D*(72)|*dx.
9
Q(wQ,R) Q($E07R)

By (4.6), (4.7) and Poincaré’s inequality on A,,

|D?(12)?de < ¢ / |D2z|2dx+h—02/|Dz|2dx+%/|z|2dx
Q(zo,R) Q(zo,R) A, A,
< {c+cR—2(£)2/n} / |uh—w|2.
- h? \R
Q(zo,R)

The last term in (4.8) is bounded by

c
(m”)|A|ooE||Z| 2.4, || Dup, — Dw| 2;Q(z0,R)
< eR? / |Duj, — Dw|?dzx + ﬁ / |z|dx,
Q(zo,R) A,

and we proceed as before. The remaining terms in (4.8) are finally estimated with
0 >0 by

R2
26

1
(wQ(R) / |Dw|2d$+CRh(F,f;R)) +gﬁ / |DHSZ(TZ)|2dJU.
Q(wQ,R) Q($Q7R)

By the stability of IIgz (see [SZ]) we get
|DIlgz(72)2dx < ¢ / |D(72)|* + h?|D?(72)|*d,
Q(=zo,R) Q(z0,R)

and the estimates follow as above. (|

Proof of Lemma 4.1. Inequality (4.5) implies with Lemma 4.7 and Lemma 4.2 that
¢?|Duy, — Dw|*dx
Q(:Eo,R)

h
<{n(3) [ CDu- DunarPds+ 2B [ |DuiPds+ RAE SR}
Q(wQ,R) Q($O7R)
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On the other hand, from the Campanato inequality in Proposition 3.3 for w and
the triangle inequality we have

|Dup|?dz < 2 / |Dw|*dx + 2 / ¢?|Duy, — Dw|*dx
Q(zo,0) Q(zo0,0) Q(zo,R)

O\" 2 2 B 2
QC(R) / |Dw|*dx + 2 / ¢*|Dup, — Dw|*dz.

Q(wo,R) Q($Q7R)

IN

This yields the first inequality for uj. The second follows analogously with the
mean value form of the Campanato inequality: by the minimality of the mean
value,

/|Duh — (DUp) g o*dx < c[|Dw — (Dw) gy o|*dx + ¢ [|Duy, — Dw|*dz.
Q(z0,0) Q(z0,0) Q(zo,0)
We now conclude as above. It follows from (4.3) that (Dw)z, r = (Dun)g,,r, and

we can therefore use Proposition 3.3 and Lemma 4.2 with £ = (Dup, )4, r to estimate
the first term on the right hand side. This implies the assertion of the lemma. O

Proposition 4.8. Assume that Qy, is a reqular triangulation, uy, the solution (2.6)
and 69 > 0.

i) Let A € [0,n). Assume that Af}ﬁ € C%Q), f € L*2(Q,) and F € L>N(Qy).

Then there exist constants RS, hY, ¢ > 0, which depend only on Q, n, A, A,

and g, such that RE{ < b0, and for all zy € Q with dist(zg,0Q) > &y and

h<hY,
1
swp = [ 1Dunde < & (JunlBie, + 151y + IFIEer )
h<o<RY @
Q(z0,0)

i) If Aiajﬂ € 0% (Q) for some o >0, f € L*"2(Qy) and F € L>"(Qy), then
there exist constants RO, h%, c% > 0, which depend only on Q, n, o, A, and
8o, such that RY < & and, for all xo € Q with dist(xg,dQ) > & and for
h < hj,

|Dup, — (Duh)zo,g|2d$

Q(z0,0)
< & (lunli3, + 1£13 220y + I1F 2200, )-

Remark. The proof shows that we only need the quantity

1
o i R F—(F T 2d$
106% hSRERO R> / | ( )Qh( 07R)|
Qh(zO,R)

to be bounded, i.e., F' € L,QL’A(Qh).

1
sup —
h<o<RY 0

Proof. We first prove i). Let
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We obtain, by Lemma 4.1 for o = 7R with 7 € (0, 1),

U(rR) < c{T”—A+T-k(w2(3)+n(%))}qJ(R)

+ et Moz + I1F @)

whenever Rg > R > Ah and 7R > h, since

a1 (Pl ldr < P,
Qn(wo,R)
and
RZ
e VR 1
Qn(wo,R)

Now choose first 7 small enough so that e~ * < %, then Ry small enough so that
et w(Ry) < 1, and finally A; > max{A, 7'} big enough so that n(A%) < 1 Let
RY = min{Ry, Ry, }, and choose h{ small enough so that [A1hQ, R] # 0. Let
00 € [TA1hS, RS] be a radius such that

W(gp) = sup  ¥(o).

TA1hY <0< R

If oo € [TA1 hg\, TRR ], then by our choice of the parameters

3 _ _
(o) < TU(00) + e M I R er-za) + IFIZ0n oy }
and thus

—A
swp (o) < der M ar 2y + 1 F o) )
TAlh(/{SgSTRg

If TR < o < RY, then

1

c

sup  P(p) < / | Duy|?dx < —/|Duh|2dz.

7R <0<RY (TRQ)’\ (TRR)’\
Q(z0,RY) Q

In view of Garding’s inequality, this easily implies the assertion in case ).
To prove ii), note that w?(R) < cR?° and therefore, in view of part i),
w?(R)

Rn

Rn—20’
Q(wo,R) Q(wo,R)

< c{llunle + 1£132n-20) + | FI22n(e) }-

The assertion of the lemma now follows as in case i) with

1

T

C
/ |\ Dup|2dz < / |DunlPdz < el| Dun 220

U(t) / |Dup, — (Dup) sy 1| *de.

Q(mo 7t)
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5. A POINTWISE ESTIMATE AT THE BOUNDARY

The estimate for xyp € 02 is analogous to the interior estimate in Section 4.
However, two arguments need to be modified at the boundary. First, the explicit
forms of the Caccioppoli and Campanato inequalities do not seem to be directly
available in the literature. We sketch the proofs in the appendix. Secondly, the in-
terpolation operator Ilgz does not map Wy >(2) into Wy **(€2,) and must therefore
be suitably modified. To do this, assume that the nodes of the triangulation are
given by a;, i =1,..., N, where ap41,...,ay are the nodes contained in 0€2,. Let
B, = {TG 771 Tm?Qh 7é @} and for TG By deﬁne]\/o( ) = {ai La; € Tﬂth}.
Let ®; be the standard basis in S”.

Lemma 5.1. Assume that € is a domain of class CY? and Qy, a regular triangula-
tion. Then there exists an interpolation operator llgz such that for all v € Wol’z(ﬂ)
we have sz (v) € Wy (), Tsz(v)|r = sz (v)|r for all T € T\ By, and

/|DHSZ — DlIlgz(v)|?dx < ch® / | Dv|*dz.
Qh Q\Qh

Proof. This follows with a simple modification of the construction in [SZ]. Recall
that IIgz is defined by (we use the notation from [SZ])

sz (o Z@ / ()v(€)de,

where o; is an (n — 1)-simplex associated with the node a;. We define

o0 Z@ ) [ et

Clearly Tsz(v) € Wy*(%), and Tlsz agrees with sz on all T with No(T) = 0.
Assume now that Ny(T) # . By construction, the (n — 1)-simplices o; associated
with a; € No(T) are contained in 9Qy,. Let P(c;) = {z+sv(o;) : s > 0,2 € ;1 NQ,
where v(o;) is the outward normal to 9, on o;. Since v € Wol’2(§2)7 we may
estimate

| Priss) - piszPde < [ (3 ipe@) [ wienieie) o

a; ENo(T)
<o Y 1D [P (o) / Dofde.
a; €No(T) P(0;)
Since |D®;|co;r < ch™h, |Wilooi; < ch!™", and dist(z,0Q) < ch!* for all z € oy,

we obtain the assertion of the lemma. O

Assume now that ¢ € 9Q, and choose a domain Qg(xg, R) of class C? such that
Q(zo, R) C Qo(xo, R) C Q(z0,2R). Let ¢ be a smooth cut—off function such that
¢=1IL¢ =0o0nR"\ Qzo,3R), ¢ =1 on Qzo, Z), and |D¢||s < cR™!. Finally
let w € WH2(Qq(z0, R)) be the solution of the system with constant coefficients
ASP (o)

(5.1) ap(w,¥) = 0 Vi € WH3(Qo(z0, R)),
w = wp on I (xg,R).
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We need w to be defined on a smooth domain, since the duality argument in
Lemma 5.6 requires the solution of the adjoint problem (5.3) to be globally in
W22, This modification is not necessary in the scalar case, since solutions of
elliptic equations in convex domains satisfy this regularity assumption. It seems to
be an open question whether an analogous result holds for elliptic systems.

Lemma 5.2. Assume that w is the solution of (5.1).

i) We have the a priori estimate
/ |Dw — &2dx < c / |Duy, — €)?dz V€ € R™,
Qg(:l?o,R) Qg(:l?o,R)

ii) Assume that Q is a domain of class C*. Then for k > 2 we have the Cac-
cioppoli estimate

(&
|D*w|*de < m / |Dw — (Dy(20) W) o,k ® v(xo)|*da
Q(zo,0) Q(zo,R)
¢ 2
+ m / |Dw| dzx.
Q(z0,R)

iii) Assume that Q is a domain of class Ct with ¢ > k + % Then we have the
pointwise estimate

1
Drw)2 < — ¢ -~ / Dw — (D, z 2d
T e T R A
Q(wo,R)
c 1 9
Q(wQ,R)

Proof. The proof of i) is analogous to the corresponding proof in Lemma 4.2, and
we give the proof of i) in the appendix (see Corollary A.4). Finally, iii) is a
consequence of #) and Sobolev’s embedding theorem. O

We define as before ¢ = ¢?(uj, — w) and 1, = 7). The global estimate in
Lemma 4.3 4) now holds in the following form: If  is a domain of class C* with
k>2+ %, then we have the global estimate

2 ¢ 2 2( P2 2
|DYp — Dypp|"dz < —5 |up, — w|“dx + cR (E) |Dw|*dx

R
Qh(wo,R) Q(wo,R) Q(w[hR)
h\?2 9
(5.2) + C(E) / |Dw — (D (5)W)zo,r @ V(20)|*d.
Q(:Eo,R)

We conclude from 1y, € S} that

a(up —w, ) = alup —w, ¥ — ) + F(n) — (a — ao)(w, Yr),

where we used the equations for u, and w with 1, as test function. The left hand
side is estimated as in Lemma 4.4:
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Lemma 5.3. Assume that § is a domain of class Ck with k > 2+ 5. Then

c
alup, —w,¥) > ¢ / ¢*|Duy, — Dw|*dx — 2 / |up — w|?de.
Q(wQ,R) Q($E07R)

In the following lemmas we write h'*° (instead of h? since o = 1) to indicate in
which terms we use the fact that the distance to the boundary is of order h'*°.

Lemma 5.4. Assume that Q is a domain of class C* with k > 2 + 5. Then, for
e>0,

1
la(up, —w, ¥ —p)| < e C?|Duy, — Dw|*dz + ¢ — lup, — w|?da
eR?

Q($E07R) Q(wo,R)
h 9 hltoN2/n 9
+ I / |Dup, — (Dy(zg)Uh)zo,2r @ V(20)|“da + ( 7 ) / |Dup,| dx}.
Q(z0,2R) Qo(zo,R)
Proof. By definition
a(up —w, Y — ) = ap(up — w, Y — Yp) — / AP Dgw? Do (CPw')da.

(2\2p)Nspt ¢

The first term is estimated as in Lemma 4.5, where we now use the L*-estimate in
Lemma 5.2 4ii). To estimate the terms involving w, choose a rotation @ € SO(n)
such that Qu(zo) = —en, and let Q(zo, R) = QQ(zo, R), w(z) = w(Q'z) and
ap(x) = up(Qtz). Then

|Dw — (DV(wo)w)ImR ® V($0)|2d13 = / | D — (D@nlmfl(mo,R) ® €n|2d$
Q(zo,R) Q(z0,R)
S / |D’lI} — (Denﬂ’h)fl(zo,R) 029 en|2d$,
Q(w0,R)

since the mean value minimizes the integral and the resulting term can be estimated
by Lemma 5.2. The second term on the right hand side is easily estimated by
Holder’s inequality and Poincaré’s inequality on (2\ Q5) Nspt¢. Finally, by the
critical Sobolev embedding

hltoN2/n
|Dw|*dz < c( 7 ) { / | Dw|?dx 4 cR? / |D2w|2dar}
(O\Qp)Nspt ¢ Q(z0,3R) Q(x0,5 R)
hl—i—a 2/n
< ¢ = ) / \Dw|dz.
Qo($Q7R)
The assertion of the lemma follows now easily by Lemma 5.2. O

Recall that Ry, has been defined in (4.1).
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Lemma 5.5. Assume that Q is a domain of class C* with k > 2 + 5. Then, for
e >0,

Fwn) — (- ao)w.on) < S{2R) [ DunPdn + Ru(F SR}

Q($O7R)
1
+5{ / <2|Duh—Dw|2dx—|—ﬁ / lup, — w|?da
(w0, R) Q(z0,R)
h
+ E / |Duh - (Dl/(mg)uh)wo,2R ® U($0)|2d:ﬂ}.
Q(IO,QR)

Proof. This is analogous to the proof of Lemma 4.6, where we now use the global
estimate (5.2). O

The estimate for u; — w is based on a duality argument as in Section 4.

Lemma 5.6. There exists a constant A > 0 such that for all R > Ah the following
inequality holds:

h
/ lup, —w|?dz < U(R)RQ / | Duy, — Dwl|?da
QQ($Q7R) QO(wO7R)
+ cR{@AR + I [ 1Du s+ Ra(FF2R) ).

QO (10 ,2R)

Proof. Choose a smooth domain 1 (zg, R) such that Qq(zg, R) C Qo(zo, R) and
such that there exists a cut—off function 7 with the following properties: 7 =
HszT = 0 on R™ \ Qo(xo, R), 7 = 1 on Qy(xo, R), and |Dir| < ch™* for i =
0,1,2. Moreover we may assume that |Qq(zo, R) \ Qi(z0, R)| < chR" 1. Let
z € Wy %(Qo(xo, R)) be the solution of the adjoint system

(5.3) —Do (A Dp2) = uj, — '
Then z € W22(Qq(x0, R)) (see, e.g., [Gi]) and
(5.4) Izll2 + BR[| D=2 + R*|| D?z||2 < cR?||up, — w2

(the norms being taken on o(zo, R)). As in the proof of Lemma 4.7 with Ilgz
replaced by Ilgz we obtain

lup, — w|*dr = / A?iaDgsza(uﬁl —w')(1 - 7)dx
Q0 (2o, R)

Qo (xo,R) o(zo,

- / A]@iaDETZjDa(U;l —w')dx — / A?jﬂDﬂija(Tzi)dz
Qo($Q7R) Q\Qh
+ap(up —w, 72 — ﬁsz(rz)) — (a — ap)(w, fISZ(Tz)) + ]-"(ﬁsz(rz)).

Denote the terms on the right hand side by I — VI; we estimate them separately
using the inequalities

(5.5) / \D(r2)[2da < CRZ‘(%)Z/” / lun — w|2de

Qo($Q7R)\Ql ($Q7R) Qo(mo,R)
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and

140 2/n
(5.6) / |D(Tz)|2dx§cR2(hR ) / lup — w2dz,

Q\Qh Qo ($Q7R)

which follow from Poincaré’s inequality, the Sobolev embedding and the a priori
estimate (5.4). Now

1/2 1/2
N [ pePa) ([ 1D DuPr)
Qg(zo,R)\Ql(mg,R) Qg(:l?o,R)

and

1/2 1/2
111 < ) AllDrloc ([ 1Pas) ([ 1Dun - Dufdo)

spt D1 Qo(zo,R)

are easily estimated. For 111 we obtain

/2 ,pltoNi/n 1/2
|[I11] < c(mn)|A|Oo( / |Dw|2dx) R( 7 ) ( / lup, — w|2dx) ,
Qo(IQ,R) Qo(IQ,R)

and this can be estimated by Young’s inequality. To bound the remaining terms
IV — VI we use the fact that by Lemma 5.1 and (5.6)

/|HSZ(7'2) — fISZ(Tz)|2da: < ch? / |D(72)*dx
Qp Q\Qp,

2/n
< Cha(l+2/n)R2(%) / lup — w|2da.

Qo ($Q7R)

The assertion follows easily. O

The above lemmas prove the following Campanato inequality for u; at the
boundary. The proof is identical to the proof of Lemma 4.1.

Lemma 5.7. Assume that 2 is a domain of class Ck with k > 2+ 5. Then there
exists a constant A > 0 such that for allh < 0 < R < Ry and R > Ah the following
inequalities hold:

| Duy, |*dx
Q(zo,0)
n h
Sc{(%) —I—wQ(R)—Fn(R) +h2‘7/"} / |Duy,|?dx + ¢Ry, (F, f;2R),
Q(wo,QR)
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1D = (Dugapyin)ag.s @ a0 Pla

Q(zo,0)
0 n+2 h
< c{ (R) + n(ﬁ) } / |Dup, — (Dy(z0)tn)zo,r @ V(o) |[*da
Q($072R)
—I—c(wQ(R)—FhQU/") / |Dup|?dx + ¢Ry(F, f;2R).
Q($072R)

Here A is independent of xqg, h, o, R, u, up, while n is a nonnegative, continuous
function such that n(t) < ct'/™ for n > 3 and n(t) < c(p)t* for all p € (0,1) for
n=2.

We obtain from this Campanato inequality the following estimate at the bound-
ary:

Proposition 5.8. Assume that Q0 is a domain of class C* with k > 2 + 5, Oy a
regular triangulation and uy, the solution of (2.6). Let xg € 0N.
i) Let A € [0,n). Assume that Af}g c C%Q), f e L2 2(Qp) and F € L>MNQ).
Then there exist constants R, h}, ¢ > 0, which depend only on Q, n, \, and
A, such that for h < h%\

1
sup  — / |Duy[*da < C}\(HuhHg;Qh + 1172020, + ”FH%ZA(Qh))'
h<o<R} @

Q(zo,0)

i) If Af‘jﬁ € C%(Q) for some o >0, f € L>""2(Q,) and F € L>™(Q4), then
there exist constants RL, hl, cL > 0, which depend only on Q, n, o, and A,
such that for h < h}1

1
sup  — / |Dup, — (Dup) ey o|*d
h<o<RL @

Q(z0,0)

< b (Jlunl

Zon 1 122n-s,) + 1F 22y )-

Proof. The proof is analogous to the proof of Proposition 4.8. In the proof of i) we
choose h} small enough so that c(h})?/" < %, while in the proof of ii) we use the
inequality A < R. Thus we obtain

1
sup  — / |Dup, — (Dy(zo)Un)zo,0 @ v(xo)|?dx
h<o<R} 0

Q(zo,0)

< i (lunliBia, + 17132020y + 1FI220a,))-

The proposition follows since the mean value minimizes the integral on the left
hand side. O
6. ERROR ESTIMATES IN CAMPANATO SPACES

The estimates in Sections 4-5 imply the following stability result.

Theorem 6.1. Assume that Q is a domain of class C* with k > 2 + 5, Qn a
regular triangulation and up, a solution of (2.6).
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i) Let A € [0,n). Assume that A%—B € C%Q), f € L*2(Q,) and F € L>NQy).
Then there exists a constant ¢y > 0, which depends only on Q, n, A\, and A,
such that

1Dunllz2x @y < ex(lunllzen, + 122, + I1Flle2r@n))-

i) If Aiajﬂ € 0% (Q) for some o >0, f € L*>"2(Qy) and F € L>"(Qy), then
there exists a constant ¢, > 0, which depends only on Q, n, o, and A, such
that

| Dun |l c2m(qp) < Cn(lluhllmh + 1 fllz2n—2(0,) + ||F|\,c2’n(nh>)'

iii) If the system (2.3) has a unique solution, then the estimates in i) and ii) hold
without the norm of up on the right hand side.

iv) If the system has a unique solution, then the Ritz projection is stable in Morrey
and Campanato spaces: under the assumptions in i) and ii) we have

[ Dunllz2 0,y < exllDullp2aq,)
and
| Dunll g2,y < enllDull c2n(qy)-

Proof. To prove i), let R = min{RY, $R}} and assume that & < min{hQ,h}}. We
first show that

1
Sup  sup 3
20€Q h<R<R

Q(z0,R)

|Dunde < e(lunlBa + 1132520, + IF 12200, )

This inequality follows from the interior estimate in Proposition 4.8 and the estimate
at the boundary if Q(xzg, R) C Q or zp € 0f2, respectively. Assume now that
Q(zo, R) NI # ) and z¢ &€ 9Q. Choose a point Ty € IQ such that |xg — Tg| =
dist(zg, 09Q). Since
1 / | Duy, |2dx < ¢ / | Duy, |*dx
RA MU= 2R M
Q(z0,R) Q(70,2R)

we conclude this proof using again the boundary estimate in Proposition 4.8. The
assertion of case i) now follows easily from Lemma 3.4. The proof of i) is analo-
gous, and 44) follows from Theorem 3.1. To prove iv), define F* = Af‘jﬁ Dgu? and
note that F' € L2*(Q) (F € £2"(Q)) if Du € L?>*(Q) (Du € £2"(2)). This follows
from the fact that L°°(Q2) and C%°(Q) are multipliers in L>*(2) and £2"(12), re-
spectively. The assertion is now an immediate consequence of the a priori estimates
in 7) and ). O

The following optimal error estimates are an immediate consequence of Theorem
6.1.

Theorem 6.2. Assume that Q is a domain of class C* with k > 2 + 5, Qn a
regular triangulation, and w and uy, the unique solutions of the system (2.5) and
the finite element equation (2.6), respectively. Define e, = u — up,.
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i) Let A € [0,n). Assume that A%—B € C%Q), f € L*2(Q,) and F € L>NQy).
Then there exists a constant ¢y > 0, which depends only on Q, n, A\, and A,
such that

||D€h||L2,)\(Qh) < ey inf N ||D’LL - D’whHsz(Qh).
h 0
ii) Let A € (n—2,n). Assume that Aio‘f € CY(Q), f € L* Q) and F € W12(Q)
with DF € L2*(Qy,). Then there exists a constant cy > 0, which depends only
on Q, n, A\, and A, such that we have the optimal estimate

[Denllzzn,y < exhllD?ullr2@,)-

i) If Aiajﬂ € 0% (Q) for some o >0, f € L*"2(Qy) and F € L>"(Qy), then
there exists a constant ¢, > 0, which depends only on Q, n, o, and A, such
that

HDehHEzv"(Qh) S Cnp inf ||Du - thHEz,n(Qh).
thS(}f

iv) If Aiajﬂ € C19(Q) for some o > 0, f € L>Qy) for some A € (n,n + 2] and

F € Wh2(Q) with DF € L2*(Qy,), then there exists a constant ¢, > 0, which
depends only on Q, n, o, and A, such that
IDenll 20,y < enh]| Dt

Remarks. 1) The system (2.3) has for exampe a unique solution if the coefficients
are constant or if the coefficients Aiaf satisfy the Legendre condition, i.e., there

exists a constant ¢ > 0 such that Af‘jﬁ (x){}lfé > c|¢]? for all € € R™ and all 2 € Q.
2) The slightly stronger assumptions in part iv) of Theorem 6.2 compared with

Theorem 6.1 ii) are needed in order to ensure that D?u € L. In fact, D*u € C%

with o = ’\;—”; see Section 3.

Proof. We first prove i). For wy, € S} define F* = A%ﬁDg(uj —w?), and let vy, be
the finite element solution of (2.3) with F' = (Ff) and f = 0. By Theorem 6.1

||D'Uh||L2A(Qh) < CHDU — th||L2~>‘(Qh)'

Since the solutions of the system (2.3) are unique, vy, = R(u — wp,) is the Ritz
projection of u — wp, and this estimate implies

||Duh - th||L2,)\(Qh) S c||Du — thHLi’/\(Qh)'
The proof follows now from the triangle inequality:
|| Du — Duh||L2,X(Qh) < ||Du— DU}h”LZ,)\(Qh) + || Duy, — thHsz(Qh)'
To prove ii), we have to show that for A € (n — 2,n) the estimate

||Du - DHSZuHsz(Qh) S ChHDZUHLz,/\(Qh)
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holds. In view of Poincaré’s inequality, we deduce that Du € £222 and thus
Du € C%7(Q) with o = WT_" Hence for 0 < p < h we obtain

1 2

— |Du — DIllgzu|*dx
Qn(z0,0)

< Q% / |Du — Du(xo)|?dx + g_c)\ / |DIlszu — Du(zo)|*d.
Qn(zo,0) Qn (z0,0)

With Zy and 9 defined as in Lemma 3.4, we conclude that

Qi)‘ / |DH5Zu — DU(ZEQ)FCZZE
Qn(xo,0)
C 2 C 2
<= |Dllszu — Dul“dz + — |Du — Du(zo)|*dz.
o o

Q. (Z0,0) Qn(Zo,0)
Since Du € C%7(Q), we get

c n— loa
> / |Du — Du(o) Pda < cg" (| D?ulF 20 g,y < ch?[|D?ull720q,)
Q. (zo,0)

and a similar inequality for the integral over (Zo, 8). This proves i), since we may
use the interpolation property of Ilgz on balls with radii of order h. The proof of
i) is similar. Finally, 7v) follows since u € W2°°(Q) implies

1
sup sup — / |Du — DIyul*dz < ch?||D?u||.q, -
2€Q 0<R<diam() R ’
Qp(z0,R)

7. UNIFORM ESTIMATES

As a further application of the £2™ estimates in Theorem 6.2 we show in this
section how one can deduce from these estimates an optimal L™ estimate. This
generalizes the famous results in [RS] to systems in arbitrary dimensions. The case
of an elliptic equation in arbitrary dimensions has recently been solved in [SW2].
The methods employed in this section were first used in [DF].

Theorem 7.1. Assume that Q is a domain of class C* with k > 2+3, Qp a regular
triangulation, and that u and uy, are the unique solutions of the system (2.5) and the
finite element equation (2.6), respectively. Define ey, = u — up. If Aiajﬂ € C?7(Q)

for some o >0, f € L>*(Q,), and F € WY2(Q) is such that DF € L>*(Qy,) with
X € (n,n+ 2], then

IDenllocian < chl D?ullocie
for all Qo CC Q.

Proof. We restrict ourselves to the case of interior estimates for systems with con-
stant coefficients; the proof with C?7 coefficients is similar, since the corresponding
Green’s function has the same growth properties, see [F], [DM]. We give the ar-
guments for n > 3; for n = 2 one uses the logarithmic Green’s function. The key
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point in the argument is to use a differentiated Green’s function as introduced in
[RS].

Assume that || Dep| o0, = Dsef (z0), where g € Ty € Tp,. Choose #g € Ty such
that Q(Zo,00h) C Tp, and let é;, = ITju — up. In view of the interpolation estimate,

| Dsej (w0)| < [Dsé(wo)| + [Ds(u* — M) (z0)| < |Dsé (0)| + O(h),

and thus it suffices to estimate Dgéf(4p). Choose a smooth function § > 0 with
support in Q(Zo,00/2) and [, ddz = 1. Denote by G = G(z,y) € W,y2(2) the
solution of the elliptic system

—Do (A DpGY) = —63n,

where 6, = h™"0(*3%). Taking the derivative with respect to x, we obtain a
solution Gs = DsG of the system

_Da(A?iaDﬂGg) = —0ik Ds0p.
With y = £ we deduce by standard L? estimates that

/ |DG|*de < coh ™",
Q(io,o’h)

/ |D?G|%de < c,h™ "2,
Q(&0,0h)

for o < 09, and a slight generalization of the estimates for elliptic systems in [F]

(see also [DM]) shows that the following pointwise estimates hold on Q\ Q(&g, ooh):
|Gs| < clz— @0,

|DG|

Fix 0 < Ry < dist(Q, 99Q)/2, and choose a cut-off function 7y such that 79 = 1 on

Q(z0, Ro/2), 70 = Hszm9 = 0 on R™\ Q(x0, Rp) and |Dirp| < eRy" for i = 1, 2.
Then

(7.1) Déf(20) = an(m0én, Gs) = anlen, 0Gs) + an(ro(Iliu — u), G)

<z — 30|,
<

clx — 2o/ 7L

+ / Al DGI(Daro)ejdr — | AP (Dpmo) G Dye)da.

Qp, Qp
Using integration by parts and the estimates for G, we see that the second term
on the right hand side in (7.1) is of order O(h). It is here that we use the full
strength of the differentiated Green’s function. Since 79 = 1 on Q(&o, Ro/2), the
two integrals involving D7 in (7.1) are estimated in view of the W12 estimates for
en. Let ¥ = 179G and ¥, = llgz1y. By the orthogonality of the Ritz projection we
conclude from (7.1) that

Dyéf(i0) = | A} Dge] Da(v' —})dz + O(h).
Qp

To estimate the remaining integral, we define a family of balls Q(Zo, Re) with R, =
27'Ry, £ = —1,0,1,..., L, such that R, < h < Ry_;, and corresponding cut-off
functions 7, such that > 7, =1 on Q(Zo, Ry) and

Spt(Tz) C Q(i?o, Rg_l) \ Q(Zi?o, Rg_H).
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Then
/Q AP Dgel Do — )do
h

L

=S /Q AP (Dge], = (D} )so,n) Dalre(w' = v})de.
(=—1"7%h

In view of the £?"-estimate for Dej, this is estimated by

L
¢ Y hRY|Da(re(w — v3)]

=—1

2;Q(20,Re) "
Invoking again the estimates for G4, we obtain

L
IDenllocirg < ch?[[ Dl Y Ry + O(h) = O(h),
t=—1
and this proves the assertion of the theorem. O

APPENDIX

The following lemmas contain estimates for solutions of elliptic systems which
do not seem to be directly available in the literature. The proofs use standard
techniques and are included for the convenience of the reader.

Lemma A.1. Assume that Aiajﬂ € CY(B*(0,2R)) and that v € C*(B*(0,2R)) is
a solution of

Do(A Dgv?) =0
with v =0 on dB*(0,2R) N {x, = 0}. Then

/ |D?v|2da < % / |Dv — € ® en|?dz + cR" €2
B+(0,R) B+(0,2R)
for all £ € R™.
Proof. Let ¢ € C§°(R™) be a cut-off function such that ( =1 on B(0,R), ( =0

on R™ \ B(0,2R) and |D¢| < ¢R™! with a constant independent of R. Define
w = ((v—x,€). Then Dgw = ((Dgv — Ipn€) + Dpl(v — xz,€) and

Do(AY Dau)
= (—Q) Do A 06,8 + Do ALY (Dpv? — 0pn87) + Da(A5 DpC(v? — 2,8))
= fi + Do FY
with

fi = (D AP0 5nE7 + (Dal?) AL (D! — 85,87
and
Ff = A DpC(v? — z€).
It follows from standard results in elliptic regularity (see, e.g., [Gi], p. 363) that
c
/ |D?w|*dx < = / |Dw|?dzx + ¢ / (IDF* + |f|?)d.

B+(0,R) B+(0,2R) B+(0,2R)
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Together with Poincaré’s inequality

/ |v — 2, &|?da < ﬁ / |Dv — & ® e,|?dx,
B*+(0,2R) B+(0,2R)

this easily implies the assertion of the lemma. O

Lemma A.2. Assume that k > 3, Af‘]ﬁ, F® € CF1(B*(0,Rp)), and that v €

W12(BH(0,Ry)) N C¥(B(0, Ry)) is the solution of
Do (A7 Dgv?) = Do FY"
withv =0 on dBY(0, Ry)N{x, = 0}. Then there exists a constant c, which depends

only on k and HA?jﬁHckﬂ(Bﬂo,Ro)), such that for all 0 < o < R < Ry (here we
choose Ry small enough so that we may apply Garding’s inequality)

E

(A1) / | DFv|2dx < c{ >

BT(0,0)

(R _ Q)—2(k—f) / |D€,U|2dx
B*(0,R)

+ / |Dv|2dx+z / |DfF|2dx}

B+(0,R) =2p+(0,R)

Proof. We argue by induction. Assume first that k = 3. We have to show that

~
I|

2

/|D3v|2dx<c /|D2v|2dx—|— / | Du|*da + / |D?F|? dx

B+(0,0) B+(0,R) B+(0,R) B+(0,R)
For o € {1,...,n— 1} let v, = Dyv. Then v, is a solution of
(A.2) Do(A Dgvl) = Do(Do Ff — Dy A Dgv?) = DG

with G¢ = D, Ff — D, A ngﬂ and v, = 0 on B1(0, Ro) N {z, = 0}. It follows
from standard regularity results in elliptic theory (see, e.g., [Gi], p. 363) that

/ (D%, e < e{ (R~ 0) / | Doy [2d + / DGPd ).
B+(0,0) B+ (0,R) B+(0,R)
By the definition of G§* and v,,
/|D2ng|2dx < c{(R —0)? / |D2v[2d + / |Du|2dz + / |D2F|2dx}.
B+(0,0) B+(0,R) B+(0,R) B+ (0,R)

Rearranging the terms in the pointwise form of the differential equation, we obtain

(A.3) AP Dpnt? = DoFP = Do A3 Dgv? — Y~ AT Dogr?,
(@,8)#(nn)
and thus
AP Dy’ = =Dy A D’ + D [DoFY — Do AT Dgv? =~ AT Dogo?].
(0,8)#(n,n)

It follows from the Legendre-Hadamard condition (2.4) that the matrix (A7) has
a uniformly bounded inverse. Therefore we can solve the equation for D,,,v and
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obtain the assertion of the lemma for k = 3, since all terms on the right hand side
are estimated.
Assume now that the assertion holds for k—1. We want to show that the estimate

(A.1) holds if Af‘jﬂ, F® € C*1(B*(0, Ry)). In this case v, solves the equation (A.2)

with A%°, F@ € C*=2(B*+(0, Ry)), and we can use (A.1) for k — 1. Thus
ij i
k—2
|DF Lo, |2de < c{ (R — )20 / | D v, | da
B+(0,0) =2 B*(0,R)
k—2
+ / Dy 2de + Y / |D'F|2da }
B+(0,R) ‘=2p+(0,R)

Thus all derivates of v of order k except DEv are estimated. Finally, we obtain the
estimate for Do on differentiating (A.3) (k — 2) times. O

Lemma A.3. Assume that Q is a domain of class C*, k > 2, g € 0Q and 2R <
Ro. Let v € C*(Q(x0,2R)) be a solution of

Do(Af (20)Dgv?) =0, i=1,...,m.
Then for all £ € R™ we have

C n
|DFyde < R / |Dv + € @ v(xo)|*dz + cR™|€|?
Q(z0,R) Q(z0,2R)
¢ 2
+ R20-2) / |Dv|*dx.

Q(:Eo ,2R)

Proof. Assume first that o = 0 and v(zp) = e,. By assumption there exists a
diffeomorphism v € C?(B*(0,2R)) — ©(0,2R) such that v(B*(0, R)) = Q(0, R)
and Dv(0) =Id. Let o = vo~, I';; = 07"/0x;(z) and (I'7) = (I';;)~'. Then o is a
solution of

D (A D?) =0, i=1,....m,
with
A = AZPTVPTH det Dy.

Changing coordinates, we deduce that

k
|DFy|dz < CZ / |D | dx

=1

Q(zo,R) B+ (0,R)

70 7 n c ~
< R2(k—1) / |Dv _€®en|2dx+CR |€|2+ R2-2) / |Dv|2dx.
B+(0,2R) B+(0,2R)

The last inequality follows for k& = 2 directly from Lemma A.1; for &k > 3 we
apply Lemma A.2 iteratively to D0, £ = k,k—1,...,3, on a sequence of half balls
B*(0, Ry) such that (Ry_1 — Ry)~! < cR™!, and then use Lemma A.1 to estimate
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the second derivatives. We now obtain the desired inequality in the case x¢y = 0,
v(xg) = —en, since

/ |Db — € @ e,|?dx

B+(0,2R)
< / |Du(y(2))|2 | D (x) — Dy (0)d + / Du(y(2)) — € ® enlde
B+(0,2R) B+(0,2R)
< cR? / | Du|*dz + / |Dv — € ® e, |*da.
Q(0,2R) Q(0,2R)

In the general case we choose a rigid motion {(z) = R(z — zo) with R € SO(n)
such that Q = £(Q) satisfies v5(0) = —e,,. Let © = v(¢7!(x)). Then

/ |Db — £ ® e,|?de = / |Dv(¢ ()R — € ® Rle, R'2da

0(0,2R) £(Q(z0.2R))

|Dv + € @ v(xo)|*d.

Q(:Eo,QR)
The assertion of the lemma now follows as before. O

Corollary A.4. Assume that Q is a domain of class C*, k > 2, xy € 0%, and
2R < Ry. Let v e WH2(Q(z0,2R)) be a solution of

Do(AY (20)Dgv?) =0, i=1,...,m.

j

Then
c
/ |DFv|?dz < TRG-D) / |Dv = (Dy(20)0)z0,R ® v(xo)|?dx
Q($O7R) Q(wo,2R)
c
+ ) / |DU|2dJC.

Q(meR)

Proof. Standard regularity results in elliptic theory imply that v is smooth in
Q(zo,2R). The estimate follows now from Lemma A.3 with { = —(Dpv)y,,z. O

Proposition A.5. Assume that Q is a domain of class C*°, xy € 9Q, and v €
W12(Q(xo, R)) is a solution of the elliptic system

— Do (A (20) Dgv?) = 0
with v =0 on QN I (xg, R). Then
2 0 \"t2 2
|Dv = (Dy(20)0) 0,0 @ V(20)|“dz < C(E) |Dv — (Dy(20)0)xo,r @ V(20)|“dx
Q(zo,0) Q(zo,R)
+ cR2U/|Dv|2dx.
Q(z0,R)

Proof. This is an immediate consequence of the Campanato inequality in Proposi-
tion 3.3 for the solution ¥ of the transformed system on BT (0, R). See the proof of
Lemma A.3 for details. O
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