Computation of relative class numbers of CM-fields by using Hecke $L$-functions
HTML articles powered by AMS MathViewer
- by Stéphane Louboutin;
- Math. Comp. 69 (2000), 371-393
- DOI: https://doi.org/10.1090/S0025-5718-99-01096-0
- Published electronically: May 21, 1999
- PDF | Request permission
Abstract:
We develop an efficient technique for computing values at $s=1$ of Hecke $L$-functions. We apply this technique to the computation of relative class numbers of non-abelian CM-fields $\mathbf { N}$ which are abelian extensions of some totally real subfield $\mathbf { L}$. We note that the smaller the degree of $\mathbf { L}$ the more efficient our technique is. In particular, our technique is very efficient whenever instead of simply choosing $\mathbf { L} =\mathbf { N}^+$ (the maximal totally real subfield of $\mathbf { N}$) we can choose $\mathbf { L}$ real quadratic. We finally give examples of computations of relative class numbers of several dihedral CM-fields of large degrees and of several quaternion octic CM-fields with large discriminants.References
- David A. Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Fermat, class field theory and complex multiplication. MR 1028322
- A. Fröhlich and J. Queyrut, On the functional equation of the Artin $L$-function for characters of real representations, Invent. Math. 20 (1973), 125–138. MR 321888, DOI 10.1007/BF01404061
- A. Fröhlich, Artin root numbers and normal integral bases for quaternion fields, Invent. Math. 17 (1972), 143–166. MR 323759, DOI 10.1007/BF01418937
- Haruzo Hida, Elementary theory of $L$-functions and Eisenstein series, London Mathematical Society Student Texts, vol. 26, Cambridge University Press, Cambridge, 1993. MR 1216135, DOI 10.1017/CBO9780511623691
- Y. Lefeuvre. Corps diédraux à multiplication complexe principaux. Preprint Univ. Caen (1997)
- Stéphane Louboutin, Minoration au point $1$ des fonctions $L$ et détermination des corps sextiques abéliens totalement imaginaires principaux, Acta Arith. 62 (1992), no. 2, 109–124 (French). MR 1183984, DOI 10.4064/aa-62-2-109-124
- Stéphane Louboutin, Calcul des nombres de classes relatifs: application aux corps octiques quaternioniques à multiplication complexe, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 7, 643–646 (French, with English and French summaries). MR 1245090
- Stéphane Louboutin, Calcul des nombres de classes relatifs de certains corps de classes de Hilbert, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 4, 321–325 (French, with English and French summaries). MR 1289305
- Stéphane Louboutin, Calcul du nombre de classes des corps de nombres, Pacific J. Math. 171 (1995), no. 2, 455–467 (French, with French summary). MR 1372239
- Stéphane Louboutin, Determination of all quaternion octic CM-fields with class number $2$, J. London Math. Soc. (2) 54 (1996), no. 2, 227–238. MR 1405052, DOI 10.1112/jlms/54.2.227
- Stéphane Louboutin, Computation of relative class numbers of CM-fields, Math. Comp. 66 (1997), no. 219, 1185–1194. MR 1422790, DOI 10.1090/S0025-5718-97-00863-6
- S. Louboutin. Computation of relative class numbers of imaginary abelian number fields. Exp. Math. 7 (1998), 293–303.
- S. Louboutin and R. Okazaki. The class number one problem for some non-abelian normal CM-fields of $2$-power degees. Proc. London Math. Soc. (3) 76 (1998), 523–548.
- Stéphane Louboutin, Ryotaro Okazaki, and Michel Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc. 349 (1997), no. 9, 3657–3678. MR 1390044, DOI 10.1090/S0002-9947-97-01768-6
- S. Louboutin and Y.-H. Park. Class number problems for dicyclic CM-fields. Acta Arith., to appear.
- S. Louboutin, Y.-H. Park and Y. Lefeuvre. Construction of the real dihedral number fields of degree $2p$. Applications. Acta Arith. (to appear).
- Jacques Martinet, Sur l’arithmétique des extensions galoisiennes à groupe de Galois diédral d’ordre $2p$, Ann. Inst. Fourier (Grenoble) 19 (1969), no. fasc. 1, 1–80, ix (French, with English summary). MR 262210
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Ryotaro Okazaki, On evaluation of $L$-functions over real quadratic fields, J. Math. Kyoto Univ. 31 (1991), no. 4, 1125–1153. MR 1141089, DOI 10.1215/kjm/1250519681
- Ryotaro Okazaki, An elementary proof for a theorem of Thomas and Vasquez, J. Number Theory 55 (1995), no. 2, 197–208. MR 1366570, DOI 10.1006/jnth.1995.1137
- Takuro Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 2, 393–417. MR 427231
- Carl Ludwig Siegel, Lectures on advanced analytic number theory, Tata Institute of Fundamental Research Lectures on Mathematics, No. 23, Tata Institute of Fundamental Research, Bombay, 1965. Notes by S. Raghavan. MR 262150
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
- Don Zagier, A Kronecker limit formula for real quadratic fields, Math. Ann. 213 (1975), 153–184. MR 366877, DOI 10.1007/BF01343950
Bibliographic Information
- Stéphane Louboutin
- Affiliation: Université de Caen, Campus 2, Département de Mathématiques, 14032 Caen cedex, France
- Email: louboutimath.unicaen.fr
- Received by editor(s): April 16, 1997
- Published electronically: May 21, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp. 69 (2000), 371-393
- MSC (1991): Primary 11M20, 11R42; Secondary 11R29
- DOI: https://doi.org/10.1090/S0025-5718-99-01096-0
- MathSciNet review: 1648395