Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Numerical algorithms for semilinear parabolic equations with small parameter based on approximation of stochastic equations

Authors: G. N. Milstein and M. V. Tretyakov
Journal: Math. Comp. 69 (2000), 237-267
MSC (1991): Primary 35K55, 60H10, 60H30, 65M99
Published electronically: May 21, 1999
MathSciNet review: 1653966
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The probabilistic approach is used for constructing special layer methods to solve the Cauchy problem for semilinear parabolic equations with small parameter. Despite their probabilistic nature these methods are nevertheless deterministic. The algorithms are tested by simulating the Burgers equation with small viscosity and the generalized KPP-equation with a small parameter.

References [Enhancements On Off] (What's this?)

  • 1. M. Bossy, D. Talay. A stochastic particle method for the McKean-Vlasov and the Burgers equation. Math. Comp. 66 (1997), pp. 237-267. MR 97c:60233
  • 2. V.G. Danilov, V.P. Maslov, K.A. Volosov. Mathematical Modelling of Heat and Mass Transfer Processes. Kluwer Academic Publishers, Dordrecht, 1995 (Engl. transl. from Russian 1987). MR 98a:35013
  • 3. K. Eriksson, C. Johnson. Adaptive finite element methods for parabolic problems IV: Nonlinear problems. SIAM J. Numer. Anal. 32 (1995), pp. 1729-1749. MR 96i:65081
  • 4. C.A.J. Fletcher. Computational Techniques for Fluid Dynamics. Volumes I, II, Springer, 1991. MR 92e:76042; MR 92f:76065
  • 5. M.I. Freidlin. Functional Integration and Partial Differential Equations. Princeton Univ. Press, Princeton, 1985. MR 87g:60066
  • 6. M.I. Freidlin. Markov Processes and Differential Equations: Asymptotic Problems. Birkhäuser, Basel, 1996. MR 97f:60150
  • 7. I.M. Gelfand. Some problems in the theory of quasi-linear equations. Uspehi Mat. Nauk 14 (1959), pp. 237-267. (Russian) MR 22:1736 (English transl., Amer. Math. Soc. Trans. (2) 29 (1963), 295-381. MR 27:3921)
  • 8. A.M. Il'in. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Nauka, Moscow, 1989. (Russian) MR 90i:65032 (English transl., Amer. Math. Soc., Providence, RI, 1992. MR 93g:35016)
  • 9. A.M. Il'in, O.A. Oleinik. Asymptotic behavior of solutions of the Cauchy problem for some quasi-linear equations for large values of time. Mat. Sbornik 51 (1960), pp. 237-267. (Russian) MR 22:11222
  • 10. E. Hairer, S.P. Nørsett, G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, 1993. MR 94c:65005
  • 11. J. Kevorkian, J.D. Cole. Multiple Scale and Singular Perturbation Methods. Springer, 1996. MR 97k:34001
  • 12. P.E. Kloeden, E. Platen. Numerical Solution of Stochastic Differential Equations. Springer, 1992. MR 94b:60069
  • 13. O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'ceva. Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc., Providence, R.I., 1988 (Engl. transl. from Russian 1967). MR 39:3159
  • 14. G.N. Milstein. Numerical Integration of Stochastic Differential Equations. Kluwer Academic Publishers, Norwell, MA, 1995 (engl. transl. from Russian 1988). MR 96e:65003
  • 15. G.N. Milstein. Solving the first boundary value problem of parabolic type by numerical integration of stochastic differential equations. Theory Prob. Appl. 40 (1995), pp. 237-267. MR 97f:35087
  • 16. G.N. Milstein. Application of numerical integration of stochastic equations for solving boundary value problems with the Neumann boundary conditions. Theory Prob. Appl. 41 (1996), pp. 237-267. MR 97j:60107
  • 17. G.N. Milstein. Weak approximation of a diffusion process in a bounded domain. Stochastics and Stochastics Reports 62 (1997), pp. 237-267. MR 98h:60116
  • 18. G.N. Milstein. The probability approach to numerical solution of nonlinear parabolic equations. Preprint No. 380, Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, 1998 (submitted).
  • 19. G.N. Milstein, M.V. Tretyakov. Numerical methods in the weak sense for stochastic differential equations with small noise. SIAM J. Numer. Anal., 34 (1997), pp. 237-267. MR 98i:60055
  • 20. G.N. Milstein, M.V. Tretyakov. Numerical methods for nonlinear parabolic equations with small parameter based on probability approach. Preprint No. 396, Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, 1998.
  • 21. J. von Neumann, R. Richtmyer. A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21 (1950), pp. 237-267. MR 12:289b
  • 22. E. Pardoux, D. Talay. Discretization and simulation of stochastic differential equations. Acta Appl. Math. 3 (1985), pp. 237-267. MR 86h:60114
  • 23. A. Quarteroni, A. Valli. Numerical Approximation of Partial Differential Equations. Springer, 1994. MR 95i:65005
  • 24. R.D. Richtmyer, K.W. Morton. Difference Methods for Initial-Value Problems. Interscience, New York, 1967. MR 36:3515
  • 25. P.J. Roache. Computational Fluid Dynamics. Hermosa, Albuquerque, N.M., 1976. MR 53:15094
  • 26. H.-G. Roos, M. Stynes, L. Tobiska. Numerical Methods for Singularity Perturbed Differential Equations: Convection-Diffusion and Flow Problems. Springer, 1996. MR 99a:65134
  • 27. A.A. Samarskii. Theory of Difference Schemes. Nauka, Moscow, 1977. (Russian) MR 58:3288 (German transl., Akademische Verlag. Geest & Portig, Leipzig, 1984. MR 86e:65003)
  • 28. J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer, 1983. MR 84d:35002
  • 29. M.E. Taylor. Partial Differential Equations III: Nonlinear Equations. Springer, 1996; corrected reprint, 1997. MR 98k:35001
  • 30. E.V. Vorozhtsov, N.N. Yanenko. Methods for the Localization of Singularities in Numerical Solutions of Gas Dynamic Problems. Springer, 1990 (Engl. transl. from Russian 1985). MR 91m:76069

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (1991): 35K55, 60H10, 60H30, 65M99

Retrieve articles in all journals with MSC (1991): 35K55, 60H10, 60H30, 65M99

Additional Information

G. N. Milstein
Affiliation: Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstr. 39, D-10117 Berlin, Germany

M. V. Tretyakov
Affiliation: Department of Mathematics, Ural State University, Lenin str. 51, 620083 Ekaterinburg, Russia

Keywords: Semilinear parabolic equations, reaction-diffusion systems, probabilistic representations for equations of mathematical physics, stochastic differential equations with small noise
Received by editor(s): April 7, 1998
Published electronically: May 21, 1999
Article copyright: © Copyright 1999 American Mathematical Society