The Postage Stamp Problem: An algorithm to determine the $h$-range on the $h$-range formula on the extremal basis problem for $k=4$
HTML articles powered by AMS MathViewer
- by Svein Mossige;
- Math. Comp. 69 (2000), 325-337
- DOI: https://doi.org/10.1090/S0025-5718-99-01204-1
- Published electronically: August 23, 1999
- PDF | Request permission
Abstract:
Given an integral “stamp" basis $A_k$ with $1=a_1 < a_2 <\ldots < a_k$ and a positive integer $h$, we define the $h$-range $n(h,A_k)$ as \[ n(h,A_k)=\max \{N\in {\mathbf N} \mid n \leq N \Longrightarrow n= \sum _{1}^{k}x_{i}a_{i}, \sum _{1}^{k}x_{i}\leq h,\;\;n,\;x_{i} \in {\mathbf N}_{0}\}.\] ${\mathbf N}_{0}={\mathbf N}\cup \{0\}$. For given $h$ and $k$, the extremal basis $A_{k}^{*}$ has the largest possible extremal $h$-range \[ n(h,k)=n(h,A_{k}^{*})=\max _{A_k} n(h,A_k).\] We give an algorithm to determine the $h$-range. We prove some properties of the $h$-range formula, and we conjecture its form for the extremal $h$-range. We consider parameter bases $A_k=A_k(h)$, where the basis elements $a_i$ are given functions of $h$. For $k=4$ we conjecture the extremal parameter bases for $h\geq 11385$.References
- R. Braunschädel, Zum Reichweitenproblem, Diplomarbeit, Math. Inst., Joh. Gutenberg-Univ., Mainz 1988.
- M.F.Challis, Two new techniques for computing extremal $h$-bases $A_k$, Computer J. 36 (1993), 117-126.
- Gerd Hofmeister, Über eine Menge von Abschnittsbasen, J. Reine Angew. Math. 213 (1963/64), 43–57 (German). MR 175873, DOI 10.1515/crll.1964.213.43
- Gerd Hofmeister, Asymptotische Abschätzungen für dreielementige Extremalbasen in natürlichen Zahlen, J. Reine Angew. Math. 232 (1968), 77–101 (German). MR 232745, DOI 10.1515/crll.1968.232.77
- G. Hofmeister, Zum Reichweitenproblem, Mainzer Seminarberichte in Additiven Zahlentheorie, 1 (1983), 30-52.
- G. Hofmeister, C. Kirfel and H. Kolsdorf, Extremale Reichweiten, Inst. Rep. No 60, Dept. of pure Math., Univ. of Bergen, 1991.
- C. Kirfel, On Extremal Bases for the $h$-range Problem, I, II, Inst. Rep. Nos. 53, 55, Dept. of pure Math., Univ. of Bergen, 1989, 1990.
- Christoph Kirfel, Extremale asymptotische Reichweitenbasen, Acta Arith. 60 (1992), no. 3, 279–288 (German). MR 1149861, DOI 10.4064/aa-60-3-279-288
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969), 377–380. MR 253531, DOI 10.1093/comjnl/12.4.377
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- S. Mossige, On the extremal $h$-range of the Postage Stamp Problem with four Stamp denominations, Dissertation, Inst. Rep. No. 41, Dept. of pure Math., Univ. of Bergen, 1986.
- Svein Mossige, On extremal $h$-bases $A_4$, Math. Scand. 61 (1987), no. 1, 5–16. MR 929394, DOI 10.7146/math.scand.a-12188
- S. Mossige, The Postage Stamp Problem. An algorithm to determine the $h$-range. On the $h$-range formula. On the extremal basis problem for $k=4$, Inst. Rep. No. xx, Dept. of pure Math., Univ. of Bergen, 1995, 1-74.
- A. Mrose, Die Bestimmung der extremalen regulären Abschnittbasen mit Hilfe einer Klasse von Kettenbruchdeterminanten, Dissertation, Freie Universität Berlin, 1969.
- Øystein J. Rødseth, An upper bound for the $h$-range of the postage stamp problem, Acta Arith. 54 (1990), no. 4, 301–306. MR 1058892, DOI 10.4064/aa-54-4-301-306
- J. Riddell and C. Chan, Some extremal $2$-bases, Math. Comp. 32 (1978), no. 142, 630–634. MR 476685, DOI 10.1090/S0025-5718-1978-0476685-7
- E.S. Selmer, The Local Postage Stamp Problem, I-III, Inst. Rep. Nos. 42, 44, 47, Dept. of Pure Math., Univ. of Bergen, 1986, 1990.
- Ernst S. Selmer, Associate bases in the postage stamp problem, J. Number Theory 42 (1992), no. 3, 320–336. MR 1189510, DOI 10.1016/0022-314X(92)90097-9
- E.S. Selmer, Asymptotic $h$-ranges and dual bases, Inst. Rep. No. 56, Dept. of Pure Math., Univ. of Bergen, 1990.
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
Bibliographic Information
- Svein Mossige
- Affiliation: University of Bergen, Department of Mathematics, Joh. Brunsgt. 12, N-5008 Bergen, Norway
- Email: svein.mossige@mi.uib.no
- Received by editor(s): March 13, 1996
- Published electronically: August 23, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp. 69 (2000), 325-337
- MSC (1991): Primary 11B13, 11D85
- DOI: https://doi.org/10.1090/S0025-5718-99-01204-1
- MathSciNet review: 1680907