Can a finite element method perform arbitrarily badly?
HTML articles powered by AMS MathViewer
- by Ivo Babuška and John E. Osborn PDF
- Math. Comp. 69 (2000), 443-462 Request permission
Abstract:
In this paper we construct elliptic boundary value problems whose standard finite element approximations converge arbitrarily slowly in the energy norm, and show that adaptive procedures cannot improve this slow convergence. We also show that the $L_{2}$-norm and the nodal point errors converge arbitrarily slowly. With the $L_{2}$-norm two cases need to be distinguished, and the usual duality principle does not characterize the error completely. The constructed elliptic problems are one dimensional.References
- Jean-Pierre Aubin, Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Gelerkin’s and finite difference methods, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 21 (1967), 599–637. MR 233068
- Ivo Babuška, Gabriel Caloz, and John E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal. 31 (1994), no. 4, 945–981. MR 1286212, DOI 10.1137/0731051
- I. Babuška and J. M. Melenk, The partition of unity method, Internat. J. Numer. Methods Engrg. 40 (1997), no. 4, 727–758. MR 1429534, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.3.CO;2-E
- I. Babuška and A. Miller, A feedback finite element method with a posteriori error estimation. I. The finite element method and some basic properties of the a posteriori error estimator, Comput. Methods Appl. Mech. Engrg. 61 (1987), no. 1, 1–40. MR 880421, DOI 10.1016/0045-7825(87)90114-9
- I. Babuška and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp. 52 (1989), no. 186, 275–297. MR 962210, DOI 10.1090/S0025-5718-1989-0962210-8
- Ivo Babuška and Manil Suri, The $p$ and $h$-$p$ versions of the finite element method, basic principles and properties, SIAM Rev. 36 (1994), no. 4, 578–632. MR 1306924, DOI 10.1137/1036141
- I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems, Numer. Math. 44 (1984), no. 1, 75–102. MR 745088, DOI 10.1007/BF01389757
- S.N. Bernstein, On the inverse problem of best approximation of continuous functions, Sochineniya II (1938), 292–294.
- R. DeVore and F. Richards, Saturation and inverse theorems for spline approximation, Spline functions and approximation theory (Proc. Sympos., Univ. Alberta, Edmonton, Alta., 1972) Internat. Ser. Numer. Math., Vol. 21, Birkhäuser, Basel, 1973, pp. 73–82. MR 0372491
- John Rowland Higgins, Completeness and basis properties of sets of special functions, Cambridge University Press, Cambridge-New York-Melbourne, 1977. Cambridge Tracts in Mathematics, No. 72. MR 0499341
- J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens, Numer. Math. 11 (1968), 346–348 (German). MR 233502, DOI 10.1007/BF02166687
- L. A. Oganesjan and L. A. Ruhovec, An investigation of the rate of convergence of variation-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary, Ž. Vyčisl. Mat i Mat. Fiz. 9 (1969), 1102–1120 (Russian). MR 295599
- P. Oswald, Personal Communication.
- Allan Pinkus, $n$-widths in approximation theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 7, Springer-Verlag, Berlin, 1985. MR 774404, DOI 10.1007/978-3-642-69894-1
- Alfred H. Schatz and Jun Ping Wang, Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions, Math. Comp. 65 (1996), no. 213, 19–27. MR 1308460, DOI 10.1090/S0025-5718-96-00649-7
- A. F. Timan, Theory of approximation of functions of a real variable, A Pergamon Press Book, The Macmillan Company, New York, 1963. Translated from the Russian by J. Berry; English translation edited and editorial preface by J. Cossar. MR 0192238
Additional Information
- Ivo Babuška
- Affiliation: Texas Institute for Computational and Applied Mathematics, University of Texas at Austin, Austin, TX 78712
- John E. Osborn
- Affiliation: Department of Mathematics, University of Maryland, College Park, MD 20742
- Email: jeo@math.umd.edu
- Received by editor(s): May 5, 1998
- Published electronically: February 24, 1999
- Additional Notes: The first author was supported in part by NSF Grant #DMS-95-01841.
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 69 (2000), 443-462
- MSC (1991): Primary :, 65N15, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-99-01085-6
- MathSciNet review: 1648351