On the solutions of a family of quartic Thue equations
HTML articles powered by AMS MathViewer
- by Alain Togbé;
- Math. Comp. 69 (2000), 839-849
- DOI: https://doi.org/10.1090/S0025-5718-99-01100-X
- Published electronically: May 17, 1999
- PDF | Request permission
Abstract:
In this paper, we solve a certain family of diophantine equations associated with a family of cyclic quartic number fields. In fact, we prove that for $n\leq 5\times 10^6$ and $n \geq N=1.191\times 10^{19}$, with $n, n+2, n^2+4$ square-free, the Thue equation \[ \Phi _n(x,y)=x^4 - n^2 x^3 y -(n^3+2n^2+4n+2) x^2 y^2 - n^2 x y^3 + y^4 = 1 \] has no integral solution except the trivial ones: $(1,0),\; (-1,0),\; (0,1),\; (0,-1)$.References
- A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19–62. MR 1234835, DOI 10.1515/crll.1993.442.19
- Yuri Bilu and Guillaume Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), no. 2, 373–392. MR 1412969, DOI 10.1006/jnth.1996.0129
- G. Hanrot, Résolution effective d’équations diophantiennes: algorithmes et applications, Thèse, Université Bordeaux 1, 1997.
- Odile Lecacheux, Familles de corps de degré $4$ et $8$ liées à la courbe modulaire $X_1(16)$, Séminaire de Théorie des Nombres, Paris, 1991–92, Progr. Math., vol. 116, Birkhäuser Boston, Boston, MA, 1993, pp. 89–105 (French). MR 1300884, DOI 10.1007/978-1-4757-4273-2_{6}
- G. Lettl and A. Pethő, Complete solution of a family of quartic Thue equations, Abh. Math. Sem. Univ. Hamburg 65 (1995), 365–383. MR 1359142, DOI 10.1007/BF02953340
- Maurice Mignotte, Verification of a conjecture of E. Thomas, J. Number Theory 44 (1993), no. 2, 172–177. MR 1225951, DOI 10.1006/jnth.1993.1043
- M. Mignotte, A. Pethő, and F. Lemmermeyer, On the family of Thue equations $x^3-(n-1)x^2y-(n+2)xy^2-y^3=k$, Acta Arith. 76 (1996), no. 3, 245–269. MR 1397316, DOI 10.4064/aa-76-3-245-269
- Maurice Mignotte, Attila Pethő, and Ralf Roth, Complete solutions of a family of quartic Thue and index form equations, Math. Comp. 65 (1996), no. 213, 341–354. MR 1316596, DOI 10.1090/S0025-5718-96-00662-X
- Attila Pethő, Complete solutions to families of quartic Thue equations, Math. Comp. 57 (1991), no. 196, 777–798. MR 1094956, DOI 10.1090/S0025-5718-1991-1094956-7
- Emery Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number Theory 34 (1990), no. 2, 235–250. MR 1042497, DOI 10.1016/0022-314X(90)90154-J
- Emery Thomas, Solutions to certain families of Thue equations, J. Number Theory 43 (1993), no. 3, 319–369. MR 1212687, DOI 10.1006/jnth.1993.1024
- A. Togbé, Sur la résolution de familles d’équations diophantiennes, Thèse de doctorat, Université Laval, Québec, Canada, Décembre 1997.
- Lawrence C. Washington, A family of cyclic quartic fields arising from modular curves, Math. Comp. 57 (1991), no. 196, 763–775. MR 1094964, DOI 10.1090/S0025-5718-1991-1094964-6
Bibliographic Information
- Alain Togbé
- Affiliation: Département de Mathematiques et de Statistique, Université Laval, Québec, Québec, G1K 7P4 Canada
- Email: atogbe@mat.ulaval.ca
- Received by editor(s): March 3, 1998
- Received by editor(s) in revised form: April 28, 1998
- Published electronically: May 17, 1999
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 69 (2000), 839-849
- MSC (1991): Primary 11D25, 11D72, 11D85, 11J86, 11R16, 11Y50
- DOI: https://doi.org/10.1090/S0025-5718-99-01100-X
- MathSciNet review: 1648411