Lattice computations for random numbers
HTML articles powered by AMS MathViewer
- by Raymond Couture and Pierre L’Ecuyer;
- Math. Comp. 69 (2000), 757-765
- DOI: https://doi.org/10.1090/S0025-5718-99-01112-6
- Published electronically: February 24, 1999
- PDF | Request permission
Abstract:
We improve on a lattice algorithm of Tezuka for the computation of the $k$-distribution of a class of random number generators based on finite fields. We show how this is applied to the problem of constructing, for such generators, an output mapping yielding optimal $k$-distribution.References
- Raymond Couture, Pierre L’Ecuyer, and Shu Tezuka, On the distribution of $k$-dimensional vectors for simple and combined Tausworthe sequences, Math. Comp. 60 (1993), no. 202, 749–761, S11–S16. MR 1176708, DOI 10.1090/S0025-5718-1993-1176708-4
- M. Fushimi and S. Tezuka, The $k$-distribution of generalized feedback shift register pseudorandom numbers, Communications of the ACM 26 (1983), no. 7, 516–523.
- J. R. Heringa, H. W. J. Blöte, and A. Compagner, New primitive trinomials of Mersenne-exponent degrees for random-number generation, Internat. J. Modern Phys. C 3 (1992), no. 3, 561–564. MR 1169571, DOI 10.1142/S0129183192000361
- Pierre L’Ecuyer, Maximally equidistributed combined Tausworthe generators, Math. Comp. 65 (1996), no. 213, 203–213. MR 1325871, DOI 10.1090/S0025-5718-96-00696-5
- A. K. Lenstra, Factoring multivariate polynomials over finite fields, J. Comput. System Sci. 30 (1985), no. 2, 235–248. MR 801825, DOI 10.1016/0022-0000(85)90016-9
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 2
- Shu Tezuka, The $k$-dimensional distribution of combined GFSR sequences, Math. Comp. 62 (1994), no. 206, 809–817. MR 1223233, DOI 10.1090/S0025-5718-1994-1223233-9
Bibliographic Information
- Raymond Couture
- Affiliation: Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada
- Email: couture@iro.umontreal.ca
- Pierre L’Ecuyer
- Affiliation: Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada
- Email: lecuyer@iro.umontreal.ca
- Received by editor(s): April 7, 1998
- Received by editor(s) in revised form: July 24, 1998
- Published electronically: February 24, 1999
- Additional Notes: This work has been supported by NSERC-Canada grants no. OGP0110050 and SMF0169893 to the second author.
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 69 (2000), 757-765
- MSC (1991): Primary 65C10
- DOI: https://doi.org/10.1090/S0025-5718-99-01112-6
- MathSciNet review: 1651748