Some polynomials over $\mathbb {Q}(t)$ and their Galois groups
HTML articles powered by AMS MathViewer
- by Gene Ward Smith;
- Math. Comp. 69 (2000), 775-796
- DOI: https://doi.org/10.1090/S0025-5718-99-01160-6
- Published electronically: August 19, 1999
- PDF | Request permission
Abstract:
Examples of polynomials with Galois group over $\mathbb Q(t)$ corresponding to every transitive group through degree eight are calculated, constructively demonstrating the existence of an infinity of extensions with each Galois group over $\mathbb Q$ through degree eight. The methods used, which for the most part have not appeared in print, are briefly discussed.References
- Gregory Butler and John McKay, The transitive groups of degree up to eleven, Comm. Algebra 11 (1983), no.Β 8, 863β911. MR 695893, DOI 10.1080/00927878308822884
- J. H. Conway, A. Hulpke, and J. McKay, On transitive permutation groups, J. Comput. Math. 1 (1998), 1β8.
- J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), no.Β 3, 308β339. MR 554399, DOI 10.1112/blms/11.3.308
- Teresa Crespo, Explicit construction of $\~A_n$ type fields, J. Algebra 127 (1989), no.Β 2, 452β461. MR 1028464, DOI 10.1016/0021-8693(89)90263-9
- Ralf Dentzer, Polynomials with cyclic Galois group, Comm. Algebra 23 (1995), no.Β 4, 1593β1603. MR 1317418, DOI 10.1080/00927879508825297
- Michael D. Fried and Moshe Jarden, Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 11, Springer-Verlag, Berlin, 1986. MR 868860, DOI 10.1007/978-3-662-07216-5
- Franz-Peter Heider and Paulgerd Kolvenbach, The construction of $\textrm {SL}(2,3)$-polynomials, J. Number Theory 19 (1984), no.Β 3, 392β411. MR 769791, DOI 10.1016/0022-314X(84)90080-5
- Gunter Malle, Polynome mit Galoisgruppen $\textrm {PGL}_2(p)$ und $\textrm {PSL}_2(p)$ ΓΌber $\textbf {Q}(t)$, Comm. Algebra 21 (1993), no.Β 2, 511β526 (German). MR 1199685, DOI 10.1080/00927879308824575
- Thomas Mattman and John McKay, Computation of Galois groups over function fields, Math. Comp. 66 (1997), no.Β 218, 823β831. MR 1401943, DOI 10.1090/S0025-5718-97-00831-4
- B. Heinrich Matzat, Konstruktive Galoistheorie, Lecture Notes in Mathematics, vol. 1284, Springer-Verlag, Berlin, 1987 (German). MR 1004467, DOI 10.1007/BFb0098324
- Kuang-yen Shih, On the construction of Galois extensions of function fields and number fields, Math. Ann. 207 (1974), 99β120. MR 332725, DOI 10.1007/BF01362150
- Gene Ward Smith, Generic cyclic polynomials of odd degree, Comm. Algebra 19 (1991), no.Β 12, 3367β3391. MR 1135631, DOI 10.1080/00927879108824322
- β, Generic cyclic polynomials and some applications, PhD thesis, University of California at Berkeley, 1990.
Bibliographic Information
- Gene Ward Smith
- Affiliation: 4408 Upham Court, Ft. Collins, Colorado 80526
- Received by editor(s): October 19, 1993
- Received by editor(s) in revised form: September 8, 1997
- Published electronically: August 19, 1999
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 69 (2000), 775-796
- MSC (1991): Primary 12F12
- DOI: https://doi.org/10.1090/S0025-5718-99-01160-6
- MathSciNet review: 1659835