Computing the Hilbert class field of real quadratic fields
HTML articles powered by AMS MathViewer
- by Henri Cohen and Xavier-François Roblot;
- Math. Comp. 69 (2000), 1229-1244
- DOI: https://doi.org/10.1090/S0025-5718-99-01111-4
- Published electronically: March 10, 1999
- PDF | Request permission
Abstract:
Using the units appearing in Stark’s conjectures on the values of $L$-functions at $s=0$, we give a complete algorithm for computing an explicit generator of the Hilbert class field of a real quadratic field.References
- Eric Bach and Jonathan Sorenson, Explicit bounds for primes in residue classes, Math. Comp. 65 (1996), no. 216, 1717–1735. MR 1355006, DOI 10.1090/S0025-5718-96-00763-6
- C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, User Guide to PARI/GP version 2.0.1, 1997
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Henri Cohen and Francisco Diaz y Diaz, A polynomial reduction algorithm, Sém. Théor. Nombres Bordeaux (2) 3 (1991), no. 2, 351–360 (English, with French summary). MR 1149802
- H. Cohen, F. Diaz y Diaz, M. Olivier, Algorithmic Techniques for Relative Extensions of Number Fields, preprint A2X (1997)
- H. Cohen, F. Diaz y Diaz, and M. Olivier, Computing ray class groups, conductors and discriminants, Math. Comp. 67 (1998), no. 222, 773–795. MR 1443117, DOI 10.1090/S0025-5718-98-00912-0
- Gary Cornell and Michael Rosen, A note on the splitting of the Hilbert class field, J. Number Theory 28 (1988), no. 2, 152–158. MR 927656, DOI 10.1016/0022-314X(88)90062-5
- D. Dummit, B. Tangedal, Computing the Leading Term of an Abelian $L$-function, ANTS III (Buhler Ed.), Lecture Notes in Computer Sci. 1423 (1998), p.400–411
- C. Fieker, Computing Class Fields via the Artin Map, preprint, 1997
- Eduardo Friedman, Hecke’s integral formula, Séminaire de Théorie des Nombres, 1987–1988 (Talence, 1987–1988) Univ. Bordeaux I, Talence, [1988?], pp. Exp. No. 5, 23. MR 993106
- Makoto Ishida, The genus fields of algebraic number fields, Lecture Notes in Mathematics, Vol. 555, Springer-Verlag, Berlin-New York, 1976. MR 435028
- Jürgen Klüners and Michael Pohst, On computing subfields, J. Symbolic Comput. 24 (1997), no. 3-4, 385–397. Computational algebra and number theory (London, 1993). MR 1484487, DOI 10.1006/jsco.1996.0140
- J. Martinet, Character theory and Artin $L$-functions, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London-New York, 1977, pp. 1–87. MR 447187
- J. Neukirch, Algebraische Zahlentheorie, Springer-Verlag, Berlin, 1992
- M. Daberkow, M. Pohst, Computations with Relative Extensions of Number Fields with an Application to the Construction of Hilbert Class Fields, Proc. ISAAC’95, ACM Press, New-York 1995, 68–76
- M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press, Cambridge, 1989. MR 1033013, DOI 10.1017/CBO9780511661952
- X.-F. Roblot, Stark’s Conjectures and Hilbert’s Twelfth Problem, preprint; Algorithmes de Factorisation dans les Extensions Relatives et Applications de la Conjecture de Stark à la Construction des Corps de Classes de Rayon, Thesis, Université Bordeaux I (1997)
- Reinhard Schertz, Problèmes de construction en multiplication complexe, Sém. Théor. Nombres Bordeaux (2) 4 (1992), no. 2, 239–262 (French). MR 1208864
- R. R. Sharma and Bahman Zohuri, A general method for an accurate evaluation of exponential integrals $E_{1}(x), x>0$, J. Comput. Phys. 25 (1977), no. 2, 199–204. MR 474705, DOI 10.1016/0021-9991(77)90022-5
- I.N. Sneddon, The Use of Integral Transforms, Mc Graw-Hill, New York, 1972
- H. M. Stark, Values of $L$-functions at $s=1$. I. $L$-functions for quadratic forms, Advances in Math. 7 (1971), 301–343 (1971). MR 289429, DOI 10.1016/S0001-8708(71)80009-9
- John Tate, Les conjectures de Stark sur les fonctions $L$ d’Artin en $s=0$, Progress in Mathematics, vol. 47, Birkhäuser Boston, Inc., Boston, MA, 1984 (French). Lecture notes edited by Dominique Bernardi and Norbert Schappacher. MR 782485
- Riho Terras, The determination of incomplete gamma functions through analytic integration, J. Comput. Phys. 31 (1979), no. 1, 146–151. MR 531128, DOI 10.1016/0021-9991(79)90066-4
- Riho Terras, Generalized exponential operators in the continuation of the confluent hypergeometric functions, J. Comput. Phys. 44 (1981), no. 1, 156–166. MR 642125, DOI 10.1016/0021-9991(81)90042-5
Bibliographic Information
- Henri Cohen
- Affiliation: Laboratoire A2X, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France
- Email: cohen@math.u-bordeaux.fr
- Xavier-François Roblot
- Affiliation: Laboratoire A2X, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France
- Address at time of publication: Department of Computer Science, Concordia University, 1455 de Maisonneuve Blvd West, Montreal, Quebec, H3G 1M8
- Email: roblot@cs.concordia.ca
- Received by editor(s): January 19, 1998
- Received by editor(s) in revised form: September 10, 1998
- Published electronically: March 10, 1999
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 69 (2000), 1229-1244
- MSC (1991): Primary 11R37, 11R42; Secondary 11Y35
- DOI: https://doi.org/10.1090/S0025-5718-99-01111-4
- MathSciNet review: 1651747