On the modular curves $Y_E(7)$
HTML articles powered by AMS MathViewer
- by Emmanuel Halberstadt and Alain Kraus;
- Math. Comp. 69 (2000), 1193-1206
- DOI: https://doi.org/10.1090/S0025-5718-99-01123-0
- Published electronically: May 21, 1999
- PDF | Request permission
Abstract:
Let $E$ denote an elliptic curve over $\mathbf {Q}$ and $Y_E(7)$ the modular curve classifying the elliptic curves $E’$ over $\mathbf {Q}$ such that the representations of $\operatorname {Gal}(\overline {\mathbf Q}/\mathbf {Q})$ in the 7-torsion points of $E$ and of $E’$ are symplectically isomorphic. In case $E$ is given by a Weierstraßequation such that the $c_4$ invariant is a square, we exhibit here nontrivial points of $Y_E(7)(\mathbf {Q})$. From this we deduce an infinite family of curves $E$ for which $Y_E(7)(\mathbf {Q})$ has at least four nontrivial points.References
- Lucia Caporaso, Joe Harris, and Barry Mazur, Uniformity of rational points, J. Amer. Math. Soc. 10 (1997), no. 1, 1–35. MR 1325796, DOI 10.1090/S0894-0347-97-00195-1
- J. E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, 1992. MR 1201151
- Ernst Kani and Wolfgang Schanz, Diagonal quotient surfaces, Manuscripta Math. 93 (1997), no. 1, 67–108. MR 1446192, DOI 10.1007/BF02677459
- A. Kraus and J. Oesterlé, Sur une question de B. Mazur, Math. Ann. 293 (1992), no. 2, 259–275 (French). MR 1166121, DOI 10.1007/BF01444715
- Alain Kraus, Sur les modules des points de $7$-torsion d’une famille de courbes elliptiques, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 4, 899–907 (French, with English and French summaries). MR 1415951, DOI 10.5802/aif.1534
- Serge Lang, Elliptic functions, 2nd ed., Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987. With an appendix by J. Tate. MR 890960, DOI 10.1007/978-1-4612-4752-4
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- K. Rubin and A. Silverberg, Families of elliptic curves with constant mod $p$ representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 148–161. MR 1363500
- Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 236190, DOI 10.2307/1970722
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
Bibliographic Information
- Emmanuel Halberstadt
- Affiliation: Université Paris VI, Laboratoire de Mathématiques Fondamentales, UFR 921, 4, place Jussieu, 75252 Paris Cedex 05, France
- Email: halberst@math.jussieu.fr
- Alain Kraus
- Affiliation: Université Paris VI, Institut de Mathématiques, Case 247, 4, place Jussieu, 75252 Paris Cedex 05, France
- MR Author ID: 263331
- Email: kraus@math.jussieu.fr
- Received by editor(s): August 8, 1997
- Received by editor(s) in revised form: July 24, 1998
- Published electronically: May 21, 1999
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 69 (2000), 1193-1206
- MSC (1991): Primary 11Gxx
- DOI: https://doi.org/10.1090/S0025-5718-99-01123-0
- MathSciNet review: 1651758