Random Fibonacci sequences and the number $1.13198824\dots$
HTML articles powered by AMS MathViewer
- by Divakar Viswanath;
- Math. Comp. 69 (2000), 1131-1155
- DOI: https://doi.org/10.1090/S0025-5718-99-01145-X
- Published electronically: June 10, 1999
- PDF | Request permission
Abstract:
For the familiar Fibonacci sequence (defined by $f_1 = f_2 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for $n>2$), $f_n$ increases exponentially with $n$ at a rate given by the golden ratio $(1+\sqrt {5})/2=1.61803398\ldots$. But for a simple modification with both additions and subtractions — the random Fibonacci sequences defined by $t_1=t_2=1$, and for $n>2$, $t_n = \pm t_{n-1} \pm t_{n-2}$, where each $\pm$ sign is independent and either $+$ or $-$ with probability $1/2$ — it is not even obvious if $\vert {t_n}\vert$ should increase with $n$. Our main result is that \begin{equation*} \sqrt [n]{\vert {t_n}\vert } \rightarrow 1.13198824\ldots \:\:\: \text {as}\:\:\: n \rightarrow \infty \end{equation*} with probability $1$. Finding the number $1.13198824\ldots$ involves the theory of random matrix products, Stern-Brocot division of the real line, a fractal measure, a computer calculation, and a rounding error analysis to validate the computer calculation.References
- Götz Alefeld and Jürgen Herzberger, Introduction to interval computations, Computer Science and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Translated from the German by Jon Rokne. MR 733988
- K. Appel and W. Haken, Every planar map is four colorable. I. Discharging, Illinois J. Math. 21 (1977), no. 3, 429–490. MR 543792
- Ludwig Arnold and Hans Crauel, Random dynamical systems, Lyapunov exponents (Oberwolfach, 1990) Lecture Notes in Math., vol. 1486, Springer, Berlin, 1991, pp. 1–22. MR 1178943, DOI 10.1007/BFb0086654
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Marc A. Berger, An introduction to probability and stochastic processes, Springer Texts in Statistics, Springer-Verlag, New York, 1993. MR 1190267, DOI 10.1007/978-1-4612-2726-7
- Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale, Complexity and real computation, Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp. MR 1479636, DOI 10.1007/978-1-4612-0701-6
- Rajan Suri, Infinitesimal perturbation analysis for general discrete event systems, J. Assoc. Comput. Mach. 34 (1987), no. 3, 686–717. MR 904200, DOI 10.1145/28869.28879
- Leo Breiman, Probability, Classics in Applied Mathematics, vol. 7, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. Corrected reprint of the 1968 original. MR 1163370, DOI 10.1137/1.9781611971286
- Richard P. Brent, On the zeros of the Riemann zeta function in the critical strip, Math. Comp. 33 (1979), no. 148, 1361–1372. MR 537983, DOI 10.1090/S0025-5718-1979-0537983-2
- A. Brocot, Calcul des rouages par approximation nouvelle méthode, Revue Chronometrique 6 (1860), 186-194.
- Philippe Chassaing, Gérard Letac, and Marianne Mora, Brocot sequences and random walks in $\textrm {SL}(2,\textbf {R})$, Probability measures on groups, VII (Oberwolfach, 1983) Lecture Notes in Math., vol. 1064, Springer, Berlin, 1984, pp. 36–48. MR 772400, DOI 10.1007/BFb0073632
- E. Clarke and J. Wing, Formal methods: state of the art and future directions, ACM Computing Surveys 28(4) (1996), 626-643.
- Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to algorithms, The MIT Electrical Engineering and Computer Science Series, MIT Press, Cambridge, MA; McGraw-Hill Book Co., New York, 1990. MR 1066870
- A. Crisanti, G. Paladin, and A. Vulpiani, Products of random matrices in statistical physics, Springer Series in Solid-State Sciences, vol. 104, Springer-Verlag, Berlin, 1993. With a foreword by Giorgio Parisi. MR 1278483, DOI 10.1007/978-3-642-84942-8
- Persi Diaconis and Mehrdad Shahshahani, Products of random matrices and computer image generation, Random matrices and their applications (Brunswick, Maine, 1984) Contemp. Math., vol. 50, Amer. Math. Soc., Providence, RI, 1986, pp. 173–182. MR 841091, DOI 10.1090/conm/050/841091
- M. Embree and L.N. Trefethen, Growth and decay of random Fibonacci sequences, Proc. Royal Soc. London Series A, to appear.
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
- Harry Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963), 377–428. MR 163345, DOI 10.1090/S0002-9947-1963-0163345-0
- H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Statist. 31 (1960), 457–469. MR 121828, DOI 10.1214/aoms/1177705909
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics, 2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1994. A foundation for computer science. MR 1397498
- Y. Guivarc’h and A. Raugi, Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrsch. Verw. Gebiete 69 (1985), no. 2, 187–242 (French). MR 779457, DOI 10.1007/BF02450281
- Nicholas J. Higham, Accuracy and stability of numerical algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1368629
- Fern Y. Hunt and Walter M. Miller, On the approximation of invariant measures, J. Statist. Phys. 66 (1992), no. 1-2, 535–548. MR 1149495, DOI 10.1007/BF01060079
- IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, Institute of Electrical and Electronics Engineers, New York, 1985. Reprinted in SIGPLAN Notices 22(2) (1987), 9-25.
- A. Ya. Khintchine, Continued fractions, P. Noordhoff Ltd., Groningen, 1963. Translated by Peter Wynn. MR 161834
- J. F. C. Kingman, Subadditive ergodic theory, Ann. Probability 1 (1973), 883–909. MR 356192, DOI 10.1214/aop/1176996798
- John R. Kinney and Tom S. Pitcher, The dimension of some sets defined in terms of $f$-expansions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965/66), 293–315. MR 198515, DOI 10.1007/BF00539116
- V. Krishnamurthy, The four color theorem, Appendix IV in F. Harary, Graph Theory, Indian student edition, Narosa/Addison-Wesley, New Delhi, 1988.
- Oscar E. Lanford III, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 427–434. MR 648529, DOI 10.1090/S0273-0979-1982-15008-X
- F. Ledrappier, Quelques propriétés des exposants caractéristiques, École d’été de probabilités de Saint-Flour, XII—1982, Lecture Notes in Math., vol. 1097, Springer, Berlin, 1984, pp. 305–396 (French). MR 876081, DOI 10.1007/BFb0099434
- R. Lima and M. Rahibe, Exact Lyapunov exponent for infinite products of random matrices, J. Phys. A 27 (1994), no. 10, 3427–3437. MR 1282183
- Konstantin Mischaikow and Marian Mrozek, Chaos in the Lorenz equations: a computer-assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 66–72. MR 1276767, DOI 10.1090/S0273-0979-1995-00558-6
- Konstantin Mischaikow and Marian Mrozek, Chaos in the Lorenz equations: a computer assisted proof. II. Details, Math. Comp. 67 (1998), no. 223, 1023–1046. MR 1459392, DOI 10.1090/S0025-5718-98-00945-4
- V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 240280
- Yuval Peres, Analytic dependence of Lyapunov exponents on transition probabilities, Lyapunov exponents (Oberwolfach, 1990) Lecture Notes in Math., vol. 1486, Springer, Berlin, 1991, pp. 64–80. MR 1178947, DOI 10.1007/BFb0086658
- M.A. Stern, Ueber eine zahlentheoretische Funktion, J. fur die reine und angewandte Mathematik 55 (1858), 193-220.
- Robert S. Strichartz, Arthur Taylor, and Tong Zhang, Densities of self-similar measures on the line, Experiment. Math. 4 (1995), no. 2, 101–128. MR 1377413
- P.T.P. Tang, Table-driven implementation of the logarithm function for IEEE floating-point arithmetic, ACM Trans. Math. Soft. 16(4) (1990), 378-400.
- J.N. Tsitsiklis and V.D. Blondel, The Lyapunov exponent and joint spectral radius of pairs of matrices are hard — when not impossible — to compute and to approximate, Mathematics of Control, Signals and Systems 10 (1997), 31-40.
- Shripad Tuljapurkar, Demographic applications of random matrix products, Random matrices and their applications (Brunswick, Maine, 1984) Contemp. Math., vol. 50, Amer. Math. Soc., Providence, RI, 1986, pp. 319–326. MR 841103, DOI 10.1090/conm/050/841103
- D. Viswanath, Lyapunov Exponents from Random Fibonacci Sequences to the Lorenz Equations, Ph.D. thesis, Dept. of Computer Science, Cornell University, 1998.
- D. Viswanath and L. N. Trefethen, Condition numbers of random triangular matrices, SIAM J. Matrix Anal. Appl. 19 (1998), no. 2, 564–581. MR 1614019, DOI 10.1137/S0895479896312869
Bibliographic Information
- Divakar Viswanath
- Affiliation: Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, California 94720
- Email: divakar@cs.cornell.edu
- Received by editor(s): November 17, 1997
- Received by editor(s) in revised form: July 14, 1998
- Published electronically: June 10, 1999
- Additional Notes: This work was supported in part by NSF Grant DMS-9500975CS and DOE Grant DE-FG02-94ER25199 to Lloyd N. Trefethen.
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 69 (2000), 1131-1155
- MSC (1991): Primary 15A52, 28A80, 60J05, 65G05
- DOI: https://doi.org/10.1090/S0025-5718-99-01145-X
- MathSciNet review: 1654010