On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems
HTML articles powered by AMS MathViewer
- by Jin Qi-nian;
- Math. Comp. 69 (2000), 1603-1623
- DOI: https://doi.org/10.1090/S0025-5718-00-01199-6
- Published electronically: February 18, 2000
- PDF | Request permission
Abstract:
The iteratively regularized Gauss-Newton method is applied to compute the stable solutions to nonlinear ill-posed problems $F(x)=y$ when the data $y$ is given approximately by $y^\delta$ with $\|y^\delta -y\|\le \delta$. In this method, the iterative sequence $\{x_k^\delta \}$ is defined successively by \[ x_{k+1}^\delta =x_k^\delta -(\alpha _k I+F’(x_k^\delta )^*F’(x_k^\delta )) ^{-1}\Big (F’(x_k^\delta )^*(F(x_k^\delta )-y^\delta ) +\alpha _k(x_k^\delta -x_0)\Big ), \] where $x_0^\delta :=x_0$ is an initial guess of the exact solution $x^\dagger$ and $\{\alpha _k\}$ is a given decreasing sequence of positive numbers admitting suitable properties. When $x_k^\delta$ is used to approximate $x^\dagger$, the stopping index should be designated properly. In this paper, an a posteriori stopping rule is suggested to choose the stopping index of iteration, and with the integer $k_\delta$ determined by this rule it is proved that \[ \|x_{k_\delta }^\delta -x^\dagger \|\le C\inf \Big \{\|x_k-x^\dagger \| +\frac {\delta }{\sqrt {\alpha _k}}:k=0,1,\ldots \Big \} \] with a constant $C$ independent of $\delta$, where $x_k$ denotes the iterative solution corresponding to the noise free case. As a consequence of this result, the convergence of $x_{k_\delta }^\delta$ is obtained, and moreover the rate of convergence is derived when $x_0-x^\dagger$ satisfies a suitable “source-wise representation". The results of this paper suggest that the iteratively regularized Gauss-Newton method, combined with our stopping rule, defines a regularization method of optimal order for each $0<\nu \le 1$. Numerical examples for parameter estimation of a differential equation are given to test the theoretical results.References
- A. B. Bakushinskiĭ, On a convergence problem of the iterative-regularized Gauss-Newton method, Zh. Vychisl. Mat. i Mat. Fiz. 32 (1992), no. 9, 1503–1509 (Russian, with Russian summary); English transl., Comput. Math. Math. Phys. 32 (1992), no. 9, 1353–1359 (1993). MR 1185952
- H. T. Banks and K. Kunisch, Estimation techniques for distributed parameter systems, Systems & Control: Foundations & Applications, vol. 1, Birkhäuser Boston, Inc., Boston, MA, 1989. MR 1045629, DOI 10.1007/978-1-4612-3700-6
- Barbara Blaschke, Andreas Neubauer, and Otmar Scherzer, On convergence rates for the iteratively regularized Gauss-Newton method, IMA J. Numer. Anal. 17 (1997), no. 3, 421–436. MR 1459331, DOI 10.1093/imanum/17.3.421
- Keith Glover and Jonathan R. Partington, Bounds on the achievable accuracy in model reduction, Modelling, robustness and sensitivity reduction in control systems (Groningen, 1986) NATO Adv. Sci. Inst. Ser. F: Comput. Systems Sci., vol. 34, Springer, Berlin, 1987, pp. 95–118. MR 912132
- Heinz W. Engl, Regularization methods for the stable solution of inverse problems, Surveys Math. Indust. 3 (1993), no. 2, 71–143. MR 1225782
- Heinz W. Engl and Helmut Gfrerer, A posteriori parameter choice for general regularization methods for solving linear ill-posed problems, Appl. Numer. Math. 4 (1988), no. 5, 395–417. MR 948506, DOI 10.1016/0168-9274(88)90017-7
- Heinz W. Engl, Karl Kunisch, and Andreas Neubauer, Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems, Inverse Problems 5 (1989), no. 4, 523–540. MR 1009037
- Helmut Gfrerer, An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates, Math. Comp. 49 (1987), no. 180, 507–522, S5–S12. MR 906185, DOI 10.1090/S0025-5718-1987-0906185-4
- C. W. Groetsch, The theory of Tikhonov regularization for Fredholm equations of the first kind, Research Notes in Mathematics, vol. 105, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 742928
- Charles W. Groetsch, Inverse problems in the mathematical sciences, Vieweg Mathematics for Scientists and Engineers, Friedr. Vieweg & Sohn, Braunschweig, 1993. MR 1247696, DOI 10.1007/978-3-322-99202-4
- Martin Hanke, Andreas Neubauer, and Otmar Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math. 72 (1995), no. 1, 21–37. MR 1359706, DOI 10.1007/s002110050158
- Bernd Hofmann, Regularization for applied inverse and ill-posed problems, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 85, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1986. A numerical approach; With German, French and Russian summaries. MR 906063, DOI 10.1007/978-3-322-93034-7
- Q. N. Jin and Z. Y. Hou, On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems, Numer. Math., 83(1999), 139–159.
- Barbara Kaltenbacher, Some Newton-type methods for the regularization of nonlinear ill-posed problems, Inverse Problems 13 (1997), no. 3, 729–753. MR 1451018, DOI 10.1088/0266-5611/13/3/012
- Alfred Karl Louis, Inverse und schlecht gestellte Probleme, Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks], B. G. Teubner, Stuttgart, 1989 (German). MR 1002946, DOI 10.1007/978-3-322-84808-6
- Andreas Neubauer, On converse and saturation results for Tikhonov regularization of linear ill-posed problems, SIAM J. Numer. Anal. 34 (1997), no. 2, 517–527. MR 1442926, DOI 10.1137/S0036142993253928
- R. Plato and U. Hämarik, On pseudo-optimal parameter choices and stopping rules for regularization methods in Banach spaces, Numer. Funct. Anal. Optim. 17 (1996), no. 1-2, 181–195. MR 1391881, DOI 10.1080/01630569608816690
- Otmar Scherzer, A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems, Numer. Funct. Anal. Optim. 17 (1996), no. 1-2, 197–214. MR 1391882, DOI 10.1080/01630569608816691
- O. Scherzer, H. W. Engl, and K. Kunisch, Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J. Numer. Anal. 30 (1993), no. 6, 1796–1838. MR 1249043, DOI 10.1137/0730091
- Thomas I. Seidman and Curtis R. Vogel, Well-posedness and convergence of some regularisation methods for nonlinear ill posed problems, Inverse Problems 5 (1989), no. 2, 227–238. MR 991919
- Andrey N. Tikhonov and Vasiliy Y. Arsenin, Solutions of ill-posed problems, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, DC; John Wiley & Sons, New York-Toronto-London, 1977. Translated from the Russian; Preface by translation editor Fritz John. MR 455365
- G. M. Vaĭnikko and A. Yu. Veretennikov, Iteratsionnye protsedury v nekorrektnykh zadachakh, “Nauka”, Moscow, 1986 (Russian). MR 859375
- V. V. Vasin and A. L. Ageev, Ill-posed problems with a priori information, Inverse and Ill-posed Problems Series, VSP, Utrecht, 1995. MR 1374573, DOI 10.1515/9783110900118
Bibliographic Information
- Jin Qi-nian
- Affiliation: Institute of Mathematics, Nanjing University, Nanjing 210008, P. R. China
- Email: galgebra@nju.edu.cn
- Received by editor(s): March 17, 1998
- Received by editor(s) in revised form: January 4, 1999
- Published electronically: February 18, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 69 (2000), 1603-1623
- MSC (1991): Primary 65J20, 45G10
- DOI: https://doi.org/10.1090/S0025-5718-00-01199-6
- MathSciNet review: 1680887