The Euler approximation in state constrained optimal control
HTML articles powered by AMS MathViewer
- by A. L. Dontchev and William W. Hager;
- Math. Comp. 70 (2001), 173-203
- DOI: https://doi.org/10.1090/S0025-5718-00-01184-4
- Published electronically: April 13, 2000
- PDF | Request permission
Abstract:
We analyze the Euler approximation to a state constrained control problem. We show that if the active constraints satisfy an independence condition and the Lagrangian satisfies a coercivity condition, then locally there exists a solution to the Euler discretization, and the error is bounded by a constant times the mesh size. The proof couples recent stability results for state constrained control problems with results established here on discrete-time regularity. The analysis utilizes mappings of the discrete variables into continuous spaces where classical finite element estimates can be invoked.References
- D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1995.
- W. E. Bosarge Jr. and O. G. Johnson, Error bounds of high order accuracy for the state regulator problem via piecewise polynomial approximations, SIAM J. Control 9 (1971), 15–28. MR 289179, DOI 10.1137/0309003
- W. E. Bosarge Jr., O. G. Johnson, R. S. McKnight, and W. P. Timlake, The Ritz-Galerkin procedure for nonlinear control problems, SIAM J. Numer. Anal. 10 (1973), 94–111. MR 321294, DOI 10.1137/0710011
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- B. M. Budak, E. M. Berkovich, and E. N. Solov′eva, Difference approximations in optimal control problems, SIAM J. Control 7 (1969), 18–31. MR 243399, DOI 10.1137/0307002
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Jane Cullum, Discrete approximations to continuous optimal control problems, SIAM J. Control 7 (1969), 32–49. MR 267439, DOI 10.1137/0307003
- L. B. Klebanov, Yuri Vladimirovitch Linnik, and A. L. Rukhin, Sur certaines questions de l’estimation séquentielle, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A1733–A1734 (French). MR 301874
- Jane Cullum, Finite-dimensional approximations of state-constrained continuous optimal control problems, SIAM J. Control 10 (1972), 649–670. MR 453015, DOI 10.1137/0310048
- James W. Daniel, On the approximate minimization of functionals, Math. Comp. 23 (1969), 573–581. MR 247746, DOI 10.1090/S0025-5718-1969-0247746-7
- James W. Daniel, On the convergence of a numerical method for optimal control problems, J. Optim. Theory Appl. 4 (1969), 330–342. MR 251894, DOI 10.1007/BF00927675
- James W. Daniel, The Ritz-Galerkin method for abstract optimal control problems, SIAM J. Control 11 (1973), 53–63. MR 322641, DOI 10.1137/0311004
- J. W. Daniel, The Approximate Minimization of Functionals, Wiley-Interscience, New York 1983.
- Asen L. Dontchev, Error estimates for a discrete approximation to constrained control problems, SIAM J. Numer. Anal. 18 (1981), no. 3, 500–514. MR 615528, DOI 10.1137/0718032
- A. L. Dontchev, Perturbations, approximations and sensitivity analysis of optimal control systems, Lecture Notes in Control and Information Sciences, vol. 52, Springer-Verlag, Berlin, 1983. MR 790847, DOI 10.1007/BFb0043612
- A. L. Dontchev, Discrete approximations in optimal control, Nonsmooth analysis and geometric methods in deterministic optimal control (Minneapolis, MN, 1993) IMA Vol. Math. Appl., vol. 78, Springer, New York, 1996, pp. 59–80. MR 1411706, DOI 10.1007/978-1-4613-8489-2_{3}
- Asen L. Dontchev, An a priori estimate for discrete approximations in nonlinear optimal control, SIAM J. Control Optim. 34 (1996), no. 4, 1315–1328. MR 1395836, DOI 10.1137/S036301299426948X
- Asen L. Dontchev and William W. Hager, Lipschitzian stability in nonlinear control and optimization, SIAM J. Control Optim. 31 (1993), no. 3, 569–603. MR 1214755, DOI 10.1137/0331026
- Paul Dupuis and Matthew R. James, Rates of convergence for approximation schemes in optimal control, SIAM J. Control Optim. 36 (1998), no. 2, 719–741. MR 1616550, DOI 10.1137/S0363012994267789
- A. L. Dontchev and W. W. Hager, A new approach to Lipschitz continuity in state constrained optimal control, Systems and Control Letters, 35 (1998), pp. 137–143.
- A. L. Dontchev, W. W. Hager, and V. M. Veliov, Second-order Runge-Kutta approximations in constrained optimal control, Department of Mathematics, University of Florida, Gainesville, FL 32611, Dec 29, 1998 (http://www. math.ufl.edu/$\tilde {~}$hager/papers/rk2.ps).
- A. L. Dontchev, W. W. Hager, A. B. Poore, and Bing Yang, Optimality, stability, and convergence in nonlinear control, Appl. Math. Optim. 31 (1995), no. 3, 297–326. MR 1316261, DOI 10.1007/BF01215994
- J. C. Dunn, On $L^2$ sufficient conditions and the gradient projection method for optimal control problems, SIAM J. Control Optim. 34 (1996), no. 4, 1270–1290. MR 1395833, DOI 10.1137/S0363012994266127
- G. Gerov (ed.), Matematika i matematichesko obrazovanie, BЪlgar. Akad. Nauk, Sofia, 1984 (Bulgarian). MR 748673
- William W. Hager, The Ritz-Trefftz method for state and control constrained optimal control problems, SIAM J. Numer. Anal. 12 (1975), no. 6, 854–867. MR 415463, DOI 10.1137/0712063
- William W. Hager, Rates of convergence for discrete approximations to unconstrained control problems, SIAM J. Numer. Anal. 13 (1976), no. 4, 449–472. MR 500418, DOI 10.1137/0713040
- Olga Taussky, An algebraic property of Laplace’s differential equation, Quart. J. Math. Oxford Ser. 10 (1939), 99–103. MR 83, DOI 10.1093/qmath/os-10.1.99
- William W. Hager, Lipschitz continuity for constrained processes, SIAM J. Control Optim. 17 (1979), no. 3, 321–338. MR 528899, DOI 10.1137/0317026
- W. W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system, Department of Mathematics, University of Florida, Gainesville, FL 32611, January 4, 1999 (http://www.math.ufl.edu/$\tilde {~}$hager/papers/rk.ps).
- William W. Hager and George D. Ianculescu, Dual approximations in optimal control, SIAM J. Control Optim. 22 (1984), no. 3, 423–465. MR 739835, DOI 10.1137/0322027
- Richard F. Hartl, Suresh P. Sethi, and Raymond G. Vickson, A survey of the maximum principles for optimal control problems with state constraints, SIAM Rev. 37 (1995), no. 2, 181–218. MR 1343211, DOI 10.1137/1037043
- Kazimierz Malanowski, Christof Büskens, and Helmut Maurer, Convergence of approximations to nonlinear optimal control problems, Mathematical programming with data perturbations, Lecture Notes in Pure and Appl. Math., vol. 195, Dekker, New York, 1998, pp. 253–284. MR 1472274
- B. Sh. Mordukhovich, On difference approximations of optimal control systems, Prikl. Mat. Mekh. 42 (1978), no. 3, 431–440 (Russian); English transl., J. Appl. Math. Mech. 42 (1978), no. 3, 452–461 (1979). MR 622481, DOI 10.1016/0021-8928(78)90113-2
- E. Polak, An historical survey of computational methods in optimal control, SIAM Rev. 15 (1973), 553–584. MR 398101, DOI 10.1137/1015071
- Elijah Polak, Optimization, Applied Mathematical Sciences, vol. 124, Springer-Verlag, New York, 1997. Algorithms and consistent approximations. MR 1454128, DOI 10.1007/978-1-4612-0663-7
- A. Schwartz and E. Polak, Consistent approximations for optimal control problems based on Runge-Kutta integration, SIAM J. Control Optim. 34 (1996), no. 4, 1235–1269. MR 1395832, DOI 10.1137/S0363012994267352
- Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973. MR 443377
- Vladimir Veliov, On the time-discretization of control systems, SIAM J. Control Optim. 35 (1997), no. 5, 1470–1486. MR 1466911, DOI 10.1137/S0363012995288987
- Stephen E. Wright, Consistency of primal-dual approximations for convex optimal control problems, SIAM J. Control Optim. 33 (1995), no. 5, 1489–1509. MR 1348118, DOI 10.1137/S0363012992240503
- Vera Zeidan, Sufficient conditions for variational problems with variable endpoints: coupled points, Appl. Math. Optim. 27 (1993), no. 2, 191–209. MR 1202532, DOI 10.1007/BF01195982
Bibliographic Information
- A. L. Dontchev
- Affiliation: Mathematical Reviews, Ann Arbor, Michigan 48107
- Email: ald@ams.org
- William W. Hager
- Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611
- Email: hager@math.ufl.edu
- Received by editor(s): October 15, 1998
- Received by editor(s) in revised form: February 16, 1999
- Published electronically: April 13, 2000
- Additional Notes: This research was supported by the National Science Foundation.
- © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 173-203
- MSC (2000): Primary 49M25, 65L10, 65L70, 65K10
- DOI: https://doi.org/10.1090/S0025-5718-00-01184-4
- MathSciNet review: 1681116