On simple double zeros and badly conditioned zeros of analytic functions of $n$ variables
HTML articles powered by AMS MathViewer
- by Jean-Pierre Dedieu and Mike Shub;
- Math. Comp. 70 (2001), 319-327
- DOI: https://doi.org/10.1090/S0025-5718-00-01194-7
- Published electronically: March 1, 2000
- PDF | Request permission
Abstract:
We give a numerical criterion for a badly conditioned zero of a system of analytic equations to be part of a cluster of two zeros.References
- V. I. Arnol′d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. I, Monographs in Mathematics, vol. 82, Birkhäuser Boston, Inc., Boston, MA, 1985. The classification of critical points, caustics and wave fronts; Translated from the Russian by Ian Porteous and Mark Reynolds. MR 777682, DOI 10.1007/978-1-4612-5154-5
- Carlos A. Berenstein, Roger Gay, Alekos Vidras, and Alain Yger, Residue currents and Bezout identities, Progress in Mathematics, vol. 114, Birkhäuser Verlag, Basel, 1993. MR 1249478, DOI 10.1007/978-3-0348-8560-7
- Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale, Complexity and real computation, Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp. MR 1479636, DOI 10.1007/978-1-4612-0701-6
- Jean-Pierre Dedieu, Condition number analysis for sparse polynomial systems, Foundations of computational mathematics (Rio de Janeiro, 1997) Springer, Berlin, 1997, pp. 75–101. MR 1661973
- J. P. Dedieu, M. Shub, Multihomogeneous Newton’s Method. To appear in: Math. of Computation.
- J. P. Dedieu, M. Shub, Newton’s Method for Overdetermined Systems of Equations. To appear in: Math. of Computation.
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 341518, DOI 10.1007/978-1-4615-7904-5
- Harold I. Levine, The singularities, $S_{1}{}^{q}$, Illinois J. Math. 8 (1964), 152–168. MR 159343
- Victor Y. Pan, Solving a polynomial equation: some history and recent progress, SIAM Rev. 39 (1997), no. 2, 187–220. MR 1453318, DOI 10.1137/S0036144595288554
- James Renegar, On the worst-case arithmetic complexity of approximating zeros of polynomials, J. Complexity 3 (1987), no. 2, 90–113. MR 907192, DOI 10.1016/0885-064X(87)90022-7
- F. Roger, Sur les variétés critiques, C. R. Acad. Sci. Paris, 208, 29-31, 1939.
- Michael Shub and Steve Smale, Complexity of Bézout’s theorem. I. Geometric aspects, J. Amer. Math. Soc. 6 (1993), no. 2, 459–501. MR 1175980, DOI 10.1090/S0894-0347-1993-1175980-4
- M. Shub and S. Smale, Complexity of Bezout’s theorem. II. Volumes and probabilities, Computational algebraic geometry (Nice, 1992) Progr. Math., vol. 109, Birkhäuser Boston, Boston, MA, 1993, pp. 267–285. MR 1230872, DOI 10.1007/978-1-4612-2752-6_{1}9
- Michael Shub and Steve Smale, Complexity of Bezout’s theorem. III. Condition number and packing, J. Complexity 9 (1993), no. 1, 4–14. Festschrift for Joseph F. Traub, Part I. MR 1213484, DOI 10.1006/jcom.1993.1002
- Michael Shub and Steve Smale, Complexity of Bezout’s theorem. IV. Probability of success; extensions, SIAM J. Numer. Anal. 33 (1996), no. 1, 128–148. MR 1377247, DOI 10.1137/0733008
- M. Shub and S. Smale, Complexity of Bezout’s theorem. V. Polynomial time, Theoret. Comput. Sci. 133 (1994), no. 1, 141–164. Selected papers of the Workshop on Continuous Algorithms and Complexity (Barcelona, 1993). MR 1294430, DOI 10.1016/0304-3975(94)90122-8
- Steve Smale, Newton’s method estimates from data at one point, The merging of disciplines: new directions in pure, applied, and computational mathematics (Laramie, Wyo., 1985) Springer, New York, 1986, pp. 185–196. MR 870648
Bibliographic Information
- Jean-Pierre Dedieu
- Affiliation: Laboratoire Approximation et Optimisation, Université Paul Sabatier, 31062 Toulouse Cedex 04, France
- Email: dedieu@cict.fr
- Mike Shub
- Affiliation: IBM T.J. Watson Research Center, Yorktowns Heights, New York 10598-0218
- Email: mshub@us.ibm.com
- Received by editor(s): January 12, 1999
- Published electronically: March 1, 2000
- Additional Notes: This work was done while both authors were at MSRI, Berkeley, in fall 1998, for the Foundations of Computational Mathematics program.
Partially supported by the National Science Foundation - © Copyright 2000 American Mathematical Society
- Journal: Math. Comp. 70 (2001), 319-327
- MSC (2000): Primary 65H10
- DOI: https://doi.org/10.1090/S0025-5718-00-01194-7
- MathSciNet review: 1680867